NUMBER FIELDS WITH PRESCRIBED
l-CLASS GROUPS¹
FRANK GERTH III

ABSTRACT. Let G be any finite elementary abelian l-group, where
l is a rational prime. We show that there exist infinitely many number
fields whose l-class groups are isomorphic to G.

1. Introduction. Let \(\mathbb{Q} \) denote the field of rational numbers, and let \(F \)
be a finite extension field of \(\mathbb{Q} \). It is well known that the ideal class group
of the number field \(F \) is a finite abelian group. We pose the following
question: Given any finite abelian group \(G \), does there exist a number field
\(F \) whose ideal class group is isomorphic to \(G \)? Fröhlich [2], Hasse [4], and
others have shown that there is a number field \(F \) whose ideal class group
has a factor group (and a subgroup) isomorphic to \(G \). However, the question
we have posed appears to be much more difficult and is unsolved at the pre-
sent time. A related question is the following: Given a finite abelian l-
group \(G \), where \(l \) is a rational prime, does there exist a number field \(F \) whose
l-class group is isomorphic to \(G \)? (By the l-class group, we mean the Sylow
l-subgroup of the ideal class group.) In this paper we provide a partial
answer to this question by showing that every finite elementary abelian l-
group is isomorphic to the l-class group of some number field.

2. Cases where \(l \) is an odd prime. Let \(p_1, \ldots, p_n \) be distinct rational
primes with \(p_i \equiv 1 \pmod{l} \) for each \(i \), where \(l \) is an odd prime. Let \(F \) be a
cyclic extension of \(\mathbb{Q} \) of degree \(l \) whose discriminant is divisible by \(p_1, \ldots, p_n \) and by no other rational primes. Let \(H_i \) be the cyclic extension of
\(\mathbb{Q} \) of degree \(l \) whose discriminant is divisible only by \(p_i, 1 \leq i \leq n \). Let \(K_i = F \cdot H_i \) for \(1 \leq i \leq n \), and let \(K = K_1 \cdots K_n = F \cdot H_1 \cdots H_n \) (in fact, \(K = H_1 \cdots H_n \) since \(F \subseteq H_1 \cdots H_n \)). Then \(K_i \) is a cyclic extension of \(F \) of
degree \(l \) (if \(n \geq 2 \)), and \(K \) is an abelian extension of \(F \) whose Galois group

¹This research was supported in part by NSF Grant GP-28488A2.
is an elementary abelian \(l \)-group of rank \(n - 1 \). Moreover \(K \) is unramified over \(F \), and hence each \(K_i \) is unramified over \(F \) [5, Theorem 1]. Let \(C_F \) denote the ideal class group of \(F \), and let \(\tau \) be a generator of the cyclic \(l \)-group \(\text{Gal}(F/Q) \). Then

\[
\text{Gal}(K/F) \simeq C_F/C_F^{1-\tau}, \quad \text{where} \quad C_F^{1-\tau} = \{a^{1-\tau} \mid a \in C_F\},
\]

since \(K \) is the genus field of \(F/Q \) [5, Theorem 1].

Let \(C_F^{(\tau)} = \{a \in C_F \mid a^\tau = a\} \). If \(a \in C_F^{(\tau)} \), then

\[
a^\tau = a^{1+\tau+\cdots+\tau^{l-1}} = 1,
\]

since \(a^{1+\tau+\cdots+\tau^{l-1}} \) is the norm of the ideal class \(a \) (hence an element of \(C_Q \)), and the ideal class group \(C_Q \) of \(Q \) is trivial. So \(C_F^{(\tau)} \) is an elementary abelian \(l \)-group. From the exact sequence

\[
1 \to C_F^{(\tau)} \to C_F^\tau \to C_F/C_F^{1-\tau} \to 1,
\]

where \(\beta(a) = a^{1-\tau} \) for \(a \in C_F \), we see that \(C_F^{(\tau)} \) and \(C_F/C_F^{1-\tau} \) have the same order. So both are elementary abelian \(l \)-groups of rank \(n - 1 \).

Now let

\[
\Psi: C_F^{(\tau)} \to C_F^\tau \to C_F/C_F^{1-\tau} \simeq \text{Gal}(K/F),
\]

where the first map is the natural inclusion, the second map is the natural projection, and the third map is the canonical isomorphism. Note that

\[
\ker \Psi = C_F^{(\tau)} \cap C_F^{1-\tau} \quad \text{and} \quad \text{im} \Psi \simeq (C_F^{(\tau)} \cdot C_F^{1-\tau})/C_F^{1-\tau}.
\]

Next let \(\mathfrak{P}_i \) denote the unique prime in \(F \) which divides \(p_i \), \(1 \leq i \leq n \). Let \(S \) be the free abelian group generated by \(\mathfrak{P}_1, \cdots, \mathfrak{P}_n \), and define a map

\[
S \to C_F^{(\tau)}, \quad \mathfrak{P} \mapsto \text{cl}(\mathfrak{P}),
\]

where \(\text{cl}(\mathfrak{P}) \) denotes the ideal class of the ideal \(\mathfrak{P} \) in \(F \). It can be easily proved [3, §13] that the cokernel of this map is isomorphic to \((E_Q \cap NF^*)/NE_F^\tau\), where \(E_Q \) (resp. \(E_F \)) denotes the group of units of \(Q \) (resp. \(F \)), \(F^* = F - \{0\} \), and \(N \) denotes the norm map from \(F \) to \(Q \). Since \([F:Q] = l \) is odd, then \(NE_F = E_Q \), and hence the map \(S \to C_F^{(\tau)} \) is surjective. Since \(\text{cl}(\mathfrak{P}_i)^l = \text{cl}(p_i) = 1 \) for each \(i \), the map \(S \to C_F^{(\tau)} \) induces a surjective map \(S/S^l \to C_F^{(\tau)} \). We let \(\phi \) be the composite map

\[
\phi: S/S^l \to C_F^{(\tau)} \to \text{Gal}(K/F),
\]

where \((\mathfrak{P}, K/F) \) denotes the Artin symbol.
We may view ϕ as a linear map from the vector space S/S^l of dimension n over the finite field F to the vector space $\text{Gal}(K/F)$ of dimension $n - 1$ over F. Using the basis $\mathfrak{p}_1 \mod S^l, \ldots, \mathfrak{p}_n \mod S^l$ for S/S^l and the isomorphism

$$\text{Gal}(K/F) \cong \text{Gal}(K_1/F) \times \cdots \times \text{Gal}(K_{n-1}/F),$$

$$(\mathfrak{p}_j, K/F) \mapsto (\mathfrak{p}_j, K_1/F) \times \cdots \times (\mathfrak{p}_j, K_{n-1}/F),$$

we see that the matrix of ϕ has ijth element $(\mathfrak{p}_j, K_i/F), 1 \leq i \leq n - 1, 1 \leq j \leq n$. Applying class field theory when $i \neq j$, we see that $(\mathfrak{p}_j, K_i/F)$ is trivial $\iff \mathfrak{p}_j$ decomposes in K_i $\iff p_j$ decomposes in H_i $\iff p_j$ is an lth power residue modulo p_i.

Theorem 1. Let r be any nonnegative integer, $n = r + 1$, and l an odd prime. Let p_1, \ldots, p_n be rational primes such that $p_i \equiv 1 \pmod{l}$ for $1 \leq i \leq n$. Furthermore assume p_2 is an lth power nonresidue modulo p_1, and for $3 \leq m \leq n$, p_m is an lth power residue modulo p_1, \ldots, p_{m-1} but an lth power nonresidue modulo p_{m-2}. Let F be a cyclic extension of Q of degree l with discriminant divisible by p_1, \ldots, p_n but by no other rational primes. Then the l-class group of F is an elementary abelian l-group of rank r.

Remark. By Dirichlet's theorem on primes in an arithmetic progression, there exist primes p_1, \ldots, p_n which satisfy the hypothesis of the theorem (e.g., p_m can be chosen from a congruence modulo $l p_1 \cdots p_{m-1}$). In fact there exist infinitely many such primes p_1, \ldots, p_n.

Corollary. Let G be any finite elementary abelian l-group. Then there exist infinitely many cyclic fields of degree l over Q whose l-class groups are isomorphic to G.

Proof of Theorem 1. We use the notation previously defined in this section. Our first claim is that ϕ is surjective for the choice of p_1, \ldots, p_n in the statement of the theorem. This follows from the fact that $\text{rank}((\mathfrak{p}_j, K_i/F)) = n - 1$, where $((\mathfrak{p}_j, K_i/F))$ denotes the $(n - 1) \times n$ matrix of ϕ. (To see that the rank of this matrix is $n - 1$, use the fact that if $i \neq j$, then $(\mathfrak{p}_j, K_i/F)$ is trivial $\iff p_j$ is an lth power residue modulo p_i.)

Since ϕ is surjective, then Ψ is surjective, and hence $(C_F^r) \cdot C_F^{1-r}/C_F^{1-r} = C_F/C_F^{1-r}$. Since $\text{cl}(\mathfrak{p}_1), \text{cl}(\mathfrak{p}_2), \ldots, \text{cl}(\mathfrak{p}_n)$ generate C_F^r, then the images of $\text{cl}(\mathfrak{p}_1), \text{cl}(\mathfrak{p}_2), \ldots, \text{cl}(\mathfrak{p}_n)$ in C_F/C_F^{1-r} generate C_F/C_F^{1-r}. Since $l | (1 - r)_l$,
NUMBER FIELDS WITH PRESCRIBED \(l \)-CLASS GROUPS

\[
\text{cl}(\mathfrak{P}_1), \text{cl}(\mathfrak{P}_1)^{1-r}, \ldots, \text{cl}(\mathfrak{P}_1)^{(1-r)^{l-1}}, \text{cl}(\mathfrak{P}_2), \text{cl}(\mathfrak{P}_2)^{1-r}, \ldots, \\
\text{cl}(\mathfrak{P}_2)^{(1-r)^{l-1}}, \ldots, \text{cl}(\mathfrak{P}_n), \text{cl}(\mathfrak{P}_n)^{1-r}, \ldots, \text{cl}(\mathfrak{P}_n)^{(1-r)^{l-1}}
\]
generate the Sylow \(l \)-subgroup of \(C_F \). But \(\text{cl}(\mathfrak{P}_i)^{1-r} = 1 \) for all \(i \) since \(\mathfrak{P}_i = \mathfrak{P}_i \). So \(\text{cl}(\mathfrak{P}_1), \text{cl}(\mathfrak{P}_2), \ldots, \text{cl}(\mathfrak{P}_n) \) generate the \(l \)-class group of \(F \). Since the group generated by \(\text{cl}(\mathfrak{P}_1), \text{cl}(\mathfrak{P}_2), \ldots, \text{cl}(\mathfrak{P}_n) \) is also \(C_F^{(r)} \), an elementary abelian \(l \)-group of rank \(n - 1 \), the theorem is proved.

3. Case \(l = 2 \).

Theorem 2. Let \(r \) be any nonnegative integer, and let \(n = r + 1 \). Let \(p_1, \ldots, p_n \) be rational primes such that \(p_i \equiv 1 \mod 4 \) for \(1 \leq i \leq n \).

Furthermore assume \(p_2 \) is a quadratic nonresidue modulo \(p_1 \), and for \(3 \leq m \leq n \), \(p_m \) is a quadratic residue modulo \(p_1, \ldots, p_{m-2} \) but a quadratic nonresidue modulo \(p_{m-1} \). Let \(F \) be the quadratic extension of \(\mathbb{Q} \) with discriminant \(p_1 \cdots p_n \). Then the 2-class group (in the strict sense and in the wide sense) of \(F \) is an elementary abelian 2-group of rank \(r \).

Remark. Again Dirichlet’s theorem shows that there exist infinitely many primes which satisfy the hypothesis of the theorem.

Corollary. Let \(G \) be any finite elementary abelian 2-group. Then there exist infinitely many quadratic extensions of \(\mathbb{Q} \) whose 2-class groups are isomorphic to \(G \).

Proof of Theorem 2. Let \(C_{F,s} \) (resp. \(C_{F,w} \)) denote the ideal class group of \(F \) in the strict (resp. wide) sense. We recall that \(C_{F,s} \cong C_{F,w} \) if \(-1\) is the norm of a unit of \(F \), and \(|C_{F,s}| = 2|C_{F,w}| \) otherwise \([1, p. 240]\).

For the 2-class group in the strict sense, there is a proof of Theorem 2 that is analogous to the proof of Theorem 1. On the other hand, it appears that we cannot use the same proof for the 2-class group in the wide sense because we do not know a priori that \(\text{cl}(\mathfrak{P}_1), \ldots, \text{cl}(\mathfrak{P}_n) \) generate \(C_{F,w}^{(r)} \); in fact, \(\text{cl}(\mathfrak{P}_1), \ldots, \text{cl}(\mathfrak{P}_n) \) generate \(C_{F,w}^{(r)} \iff -1 \) is the norm of a unit of \(F \).

However, with the choice of \(p_1, \ldots, p_n \) in the statement of Theorem 2, the matrix of

\[
\phi: S/S' \to C_{F,w}^{(r)} \to \text{Gal}(K/F), \quad \mathfrak{P} \mod S' \mapsto \text{cl}(\mathfrak{P}) \mapsto (\mathfrak{P}, K/F)
\]

has rank \(n - 1 \), which implies that the map \(S/S' \to C_{F,w}^{(r)} \) must be surjective because \(C_{F,w}^{(r)} \) is an elementary abelian 2-group of rank \(n - 1 \). Hence
\(\text{cl}(\mathbb{P}_1), \ldots, \text{cl}(\mathbb{P}_n) \) generate \(C^{(\alpha)}_{F_{\mathcal{O}}} \), and Theorem 2 can be proved in a manner similar to that of Theorem 1.

Remark. It follows from the above proof that \(-1\) is the norm of a unit of \(F \). So there exist real quadratic fields whose discriminants are divisible by arbitrarily many rational primes but whose fundamental units have norm equal to \(-1\). (See also [6], [7], and [8].)

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PENNSYLVANIA, PHILADELPHIA, PENNSYLVANIA 19174

Current address: Department of Mathematics, University of Texas, Austin, Texas 78712