INVARIANT MEANS ON ALMOST PERIODIC FUNCTIONS
AND EQUICONTINUOUS ACTIONS

ANTHONY TO-MING LAU

ABSTRACT. Let S be a topological semigroup such that the almost periodic functions on S have a left invariant mean (this is the case, for example, when S has finite intersection property for closed right ideals). Then whenever S acts equicontinuously on a compact Hausdorff space X, there exists a compact group G of homeomorphisms acting equicontinuously on a retract Y of X such that S has a common fixed point in X if and only if G has a common fixed point in Y. This result generalises some recent work of T. Mitchell. As an application, we show that whenever S acts equicontinuously on the closed unit interval I, then I contains a common fixed point for S.

1. Introduction. Let S be a semigroup of equicontinuous self maps of X, a compact Hausdorff space. Recently, T. Mitchell [6] showed that if S has finite intersection property for right ideals, then there is a compact group G of homeomorphisms of a retract Y of X with the property that S has a common fixed point in X if and only if G has a common fixed point in Y. It is the purpose of this note to modify Mitchell's result. In particular, we show that the same conclusion also holds when S satisfies an analytic condition (which is implied by Mitchell's algebraic condition), namely, the existence of a left invariant mean on the space of almost periodical functions on S.

2. Some notations. For the rest of this paper S will be a fixed topological semigroup (with separately continuous multiplication).

Let X be a compact Hausdorff space and let U be the unique uniformity on X. Then S is said to act equicontinuously on X if there exists a continuous mapping from the product space $S \times X \to X$, denoted by (s, x).
A. T.-M. LAU

→ s · x, such that

(1) s · (t · x) = (st) · x for all s, t ∈ S;

(2) for each x ∈ S, U ∈ ℰ, and y ∈ X, there exists V ∈ ℰ such that

(x, y) ∈ V implies (s · x, s · y) ∈ U for all s ∈ S.

Let C(X, X) denote the space of continuous functions from X to X with
the topology of uniform convergence on X, and let σ : S → C(X, X) be given
by (as)(x) = s · x for all s ∈ S and x in X. Then \widetilde{S}, the closure of S in
C(X, X) [3, p. 270] is a compact topological semigroup with jointly contin-
uous multiplication.

For any topological space Y, $C(Y)$ will denote the space of bounded
real-valued functions on Y. A function f in $C(S)$ is almost periodic if \{l_{af}; a ∈ S\} is relatively compact in the sup norm topology of $C(S)$, where $(l_{af})(s) = f(as)$ for all $a, s ∈ S$. Then, as known, $AP(S)$ the space of almost periodic functions on S is translation invariant, sup norm closed and containing constants (see [2, p. 80]). An element ϕ in $AP(S)^*$, the continuous dual of $AP(S)$, is a mean if $\|\phi\| = 1$ and $\phi(f) ≥ 0$ whenever $f ∈ AP(S)$ and $f ≥ 0$. If, in addition, $\phi(l_{af}) = \phi(f)$ for all $a ∈ S$ and $f ∈ AP(S)$, then ϕ is a LIM
(left invariant mean).

Let $Δ(S)$ denote the set of all means ϕ of $AP(S)$ which are multiplica-
tive, i.e. $\phi(fg) = \phi(f)\phi(g)$ for all $f, g ∈ AP(S)$. Then, as known, $Δ(S)$ is
weak*-compact and the set \{p_a; a ∈ S\}, where $p_a(f) = f(a)$ for all $f ∈ AP(S)$,
of point measures on $AP(S)$ is weak*-dense in $Δ(S)$. Furthermore, the Aren’s
product, $(ρ ∪ μ)f = ρ(h) \mu(h)$ where $h(s) = μ(l_s f)$ for all $s ∈ S$, $ρ, μ ∈ Δ(S)$ ren-
ders $Δ(S)$ into a compact topological semigroup with the weak* topology and
the multiplication in $Δ(S)$ is even jointly continuous (see Pym [7, §5]).

A topological semigroup S is left reversible if any two closed right
ideals in S have nonempty intersection. As known, if S is left reversible, then
$AP(S)$ has a LIM. However, the class of topological semigroups S for which
$AP(S)$ has a LIM and yet S is not left reversible is huge (see for example
[5, Remark 3.4]).

3. The main theorem. The proof of our main theorem is based on the
following two lemmas. The first one is known.

Lemma 1 [5, Lemma 3.1]. If S acts equicontinuously on a compact Haus-
dorff space X, and $x ∈ X$, then $T_x f ∈ AP(S)$ for any f in $C(X)$, where
$(T_x f)(s) = f(s · x)$ for all $s ∈ S$.

Lemma 2. If S acts equicontinuously on a compact Hausdorff space X, then \widetilde{S} is a continuous homomorphic image of the compact semigroup $Δ(S)$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proof. For each x in X, ϕ in $\Delta(S)$, let $(h\phi)(x)$ be a cluster point of the net $\{s_{a^*}x\}$ in X where $\{p_{\alpha}\}$ is a net of point measures on $AP(S)$ converging to ϕ in the weak* topology. Let $\{p_{t^*}\}$ be another net of point measures on $AP(S)$ converging to ϕ in the weak* topology. By passing to subnets if necessary, we may assume that $s_{a^*}x \to y$ and $t_{b^*}x \to z$. If $f \in C(X)$, then it follows from Lemma 1 that $T_x f \in AP(S)$; hence

$$f(y) = \lim_{a} f(s_{a^*}x) = \lim_{a} p_{s^*}(T_x f) = \phi(T_x f) = \lim_{b} f(t_{b^*}x) = f(z).$$

Therefore $h: \phi \to h\phi$ defines a mapping from $\Delta(S)$ into \bar{S}. It is a routine matter to verify that h is a continuous homomorphism of $\Delta(S)$ onto \bar{S}.

A topological semigroup S is said to have property (K) if whenever S acts equicontinuously on a compact Hausdorff space X, there exists a compact subgroup G of S and a retract Y of X satisfying the following two conditions:

(a) the restriction of G to Y is a group of homeomorphisms from Y onto Y;
(b) G has a common fixed point in Y if and only if S has a common fixed point in X.

Theorem. If $AP(S)$ has a LIM, then S has property (K).

Proof. If $AP(S)$ has a LIM, then $\Delta(S)$ is left reversible (see [2, §§5, 6]). Hence by Lemma 2, \bar{S} is also left reversible. Our result now follows from [6, Theorem 1].

Corollary 1. If $AP(S)$ has a LIM, then whenever S acts equicontinuously on the closed unit interval I, I has a common fixed point for S.

Proof. Let G be a compact subgroup of \bar{S} and Y a retract of I with properties as stated in (K). Since Y is a closed subinterval of I, it follows from [6, Theorem 2] that G has a common fixed point in Y. Hence S has a common fixed point in I.

Corollary 2. If S is left reversible, then S has property (K).

Proof. If S is left reversible, then $AP(S)$ has LIM (see proof of Corollary 3.3 in [5]).

Our main theorem and the two corollaries are due to Mitchell [6] for the case when S is a discrete left reversible semigroup.

An open problem. Does property (K) imply $AP(S)$ has a LIM?

The author would like to thank the referee for his many helpful suggestions, and for his correction of an error in the original version of the paper.
REFERENCES

5. A. Lau, Invariant means on almost periodic functions and fixed point properties, Rocky Mountain J. Math. 3 (1973), 69-76.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ALBERTA, EDMONTON 7, ALBERTA, CANADA