Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Schur's theorem for nearly Kähler manifolds


Authors: A. M. Naveira and L. M. Hervella
Journal: Proc. Amer. Math. Soc. 49 (1975), 421-425
MSC: Primary 53B35
DOI: https://doi.org/10.1090/S0002-9939-1975-0367848-9
MathSciNet review: 0367848
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The classical theorem of Schur on Kähler manifolds is generalized to nearly Kähler manifolds, thus solving a conjecture of A. Gray [3, p. 289].


References [Enhancements On Off] (What's this?)

  • [1] A. Gray, Minimal varieties and almost Hermitian submanifolds, Michigan Math. J. 12 (1965), 273-287. MR 32 #1658. MR 0184185 (32:1658)
  • [2] -, Almost complex submanifolds of the six sphere, Proc. Amer. Math. Soc. 20 (1969), 277-279. MR 39 #7636. MR 0246332 (39:7636)
  • [3] -, Nearly Kähler manifolds, J. Differential Geometry 4 (1970), 283-309. MR 42 #2404. MR 0267502 (42:2404)
  • [4] S. Kobayashi and K. Nomizu, Foundations of differential geometry. Vol. I, Interscience Tracts in Pure and Appl. Math., no. 15, Interscience, New York, 1963; Vol. II, 1969. MR 27 #2945; 38 #6501. MR 0152974 (27:2945)
  • [5] A. M. Naveira, Caracterisation des variétés à courbures sectionnelles holomorphes généralizées constantes, J. Differential Geometry 9 (1974), 55-60. MR 0417981 (54:6026)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53B35

Retrieve articles in all journals with MSC: 53B35


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0367848-9
Keywords: Nearly Kähler manifolds, Schur's theorem
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society