A LOCAL CHARACTERIZATION OF DARBOUX \(\mathfrak{B} \) FUNCTIONS

RICHARD G. GIBSON

ABSTRACT. A. M. Bruckner and J. B. Bruckner gave the definition of Darboux \(\mathfrak{B} \) functions and proved a theorem which is a local characterization of real-valued Darboux \(\mathfrak{B} \) functions. The purpose of this paper is to generalize this theorem. To this end, the definition of a function being Darboux \(\mathfrak{B} \) at a point is given which has a metric continuum as its range. Hence, the theorem that a function is Darboux \(\mathfrak{B} \) if and only if it is Darboux \(\mathfrak{B} \) at each point.

1. Introduction. A function having domain and range a subset of the real line is said to be a Darboux function if the image of every connected subset of its domain is a connected set. A detail account of Darboux functions can be found in the survey article by Bruckner and Ceder [2].

A. M. Bruckner and J. B. Bruckner [1] gave the definition of Darboux \(\mathfrak{B} \) functions which are defined on a euclidean space and having a separable metric space as the range, and proved a theorem which is a local characterization of real-valued Darboux \(\mathfrak{B} \) functions. Then they made the statement that it would be of interest to know whether such a theorem exists in case the range is not a subset of the real line. The purpose of this paper is to give an answer to this query. The local condition given by Bruckner and Bruckner [1] was in terms of limit superior and limit inferior. That local condition will be replaced by one where the range of the function is a metric continuum. How much less one can assume about the range without losing the results is an open question.

§2 contains some of the needed definitions and a definition of Darboux \(\mathfrak{B} \) at a point which replaces the local condition given in [1]. §3 contains the main theorem which is preceded by a lemma.

2. Preliminaries. In this paper \(X \) will be a euclidean space, \(Y \) a metric continuum, and \(\mathfrak{B} \) a topological base for \(X \) such that each member of \(\mathfrak{B} \) is connected. A function \(f \) defined on \(X \) and having range \(Y \) is said to be
Darboux \mathcal{B} provided that if U is in \mathcal{B}, then $f(\text{cl}(U))$ is connected in Y. A base \mathcal{B} for X is said to satisfy condition (*) provided any translation of an element of \mathcal{B} is in \mathcal{B}. The base \mathcal{B} satisfies condition (**) provided that for each $x \in X$ and $U \in \mathcal{B}$, $x \in \text{cl}(U)$, there exists $V \in \mathcal{B}$ such that $x \in \text{cl}(V)$ and $\text{cl}(V) - (x) \subseteq U$.

Let f be a function defined on X and having range Y. The function f is said to have property L at the point x in X provided that, if $U \in \mathcal{B}$ and x is a boundary point of U, then $f(x)$ is a limit point of $f(U)$. If x is a point in X, then a point y in Y is said to be a limit point of f at x provided that there exists a sequence $(x_n)_{n=1}^{\infty}$ of points in X which converges to x such that the sequence $(f(x_n))_{n=1}^{\infty}$ converges to y.

Definition. Let X be a euclidean space and let \mathcal{B} be a base of connected sets for X which satisfies conditions (*) and (**). Let f be a function defined on X and having range Y. The function f is said to be Darboux \mathcal{B} at the point p in X provided that the following statements are true.

1. f has property L at the point p and $f(p)$ is a limit point of f at p.
2. If $U \in \mathcal{B}$, $p \in U$, and a and b are limit points of f at p relative to U, then for each closed subset C of Y which separates a from b there exists $x \in U$ such that $f(x)$ is in C.

3. **A local characterization.** A lemma will be proved before proving the main theorem.

Lemma. Let f be a function defined on X and having range Y and let \mathcal{B} be a basis for X which satisfies conditions (*) and (**). Let $U \in \mathcal{B}$ and let $f(A)$ and $f(B)$ be two mutually separated sets such that the union of A and B is $\text{cl}(U)$. If f has property L at each point in X and P is the boundary of A relative to $\text{cl}(U)$, then the following statements are true.

1. P is the boundary of B relative to $\text{cl}(U)$.
2. P is closed in X.
3. $P \cap U$ is nonempty, dense-in-itself, and of type G_δ.
4. $A \cap P'$ and $B \cap P'$ are both dense in $P' = P \cap U$.

Proof. It is obvious that P is the boundary of B relative to $\text{cl}(U)$ and P is closed in X.

To prove that $P \cap U$ is nonempty, note that P is nonempty; for, if P were empty, then A and B would form a separation of the connected set $\text{cl}(U)$. Suppose $P \cap U$ is empty. Then $P \subseteq \text{cl}(U) - U$, and $U \subseteq A$ or $U \subseteq B$. Assume $U \subseteq A$. Choose any x in B. Then x is in $\text{cl}(U) - U$ and x is a boundary point of U. Thus $f(x)$ is a limit point of $f(U)$. So $f(x)$ is a limit point of
LOCAL CHARACTERIZATION OF DARBOUX \mathcal{B} FUNCTIONS 507

$f(A)$ which is in $f(B)$. This contradicts the fact that $f(A)$ and $f(B)$ are mutually separated. Therefore $P \cap U$ is nonempty.

Now suppose $P \cap U$ is not dense-in-itself. Then there is a point x in $P \cap U$, say x is in $P \cap A$, and a V in \mathcal{B}, $V \subset U$, such that $P \cap V = \{x\}$. If X is of dimension greater than or equal to 2, then $V - \{x\}$ is connected. So $V - \{x\} \subset A$ or $V - \{x\} \subset B$. Since x is in P, $V - \{x\}$ is not a subset of A. So $V - \{x\} \subset B$. By condition (**), there is a $W \in \mathcal{B}$ such that x is in $\text{cl}(W)$ and $\text{cl}(W) - \{x\} \subset V - \{x\} \subset B$. Since x is a boundary point of W, $f(x)$ is a limit point of $f(W)$. So $f(x)$ is a limit point of $f(B)$ which is in $f(A)$. This is a contradiction. Thus $P \cap U$ is dense-in-itself if X is of dimension greater than or equal to 2. If the dimension of X is 1, the result is easily proved.

Since P is closed and U is open, $P \cap U$ is of type G_6.

To prove that $A \cap P'$ is dense in P', suppose that $A \cap P'$ is not dense in P'. Let $V \subset U$ be an open sphere centered at a point $p \in P' \cap B$ such that $V \cap A \cap P'$ is empty. Then $A \cap V$ is open and nonempty. Let x be a point of $A \cap V$ such that $d(x, X - V)$ is greater than $2d(x, p)$ where d is the euclidean metric of X. Choose $W \in \mathcal{B}$ such that $x \in W \subset A \cap V$ and $d(\text{cl}(W), X - V)$ is greater than $d(\text{cl}(W), p)$. Let q be a point of B nearest x. Then q is in V. Let W' be a translation of W such that $q \in \text{cl}(W') - W'$ and $W' \subset A$. By condition (*), $W' \in \mathcal{B}$. Now choose $W'' \in \mathcal{B}$ such that $q \in \text{cl}(W'')$ and $\text{cl}(W'') - (q) \subset W'$. Now $q \in B$ and $\text{cl}(W'') - (q) \subset A$. Since q is a boundary point of W'', we have a contradiction by the hypothesis of the theorem. Thus $A \cap P'$ is dense in P'. In a similar way, it can be shown that $B \cap P'$ is dense in P'.

Theorem. Let X be a euclidean space and let \mathcal{B} be a base of connected sets for X which satisfies conditions (*) and (**). Let f be a function defined on X and having a metric continuum Y as its range. Then f is Darboux \mathcal{B} if and only if f is Darboux \mathcal{B} at each point in X.

Proof. Suppose f is not Darboux \mathcal{B}. Then there exists $U \in \mathcal{B}$ such that $f(\text{cl}(U))$ is not connected. Let $f(A)$ and $f(B)$ be two mutually separated sets such that the union of A and B is $\text{cl}(U)$.

Let $Y(A)$ and $Y(B)$ be two disjoint open subsets of Y such that $f(A) \subset Y(A)$ and $f(B) \subset Y(B)$. Let C be the complement of $Y(A) \cup Y(B)$. Then C separates $Y(A)$ and $Y(B)$. Let P be the boundary of A in $\text{cl}(U)$ and let $P' = P \cap U$. By the lemma both the sets $A \cap P'$ and $B \cap P'$ are dense in P'.

We now show that if p is in $A \cap U$ and W is an open set containing C, then there exists an open set $V \in \mathcal{B}$ containing p such that if $x \in \text{cl}(V)$,
then \(f(x) \in Y(A) \cup W \). Suppose the condition fails for some \(p \in A \cap U \) and \(W \supseteq C \). Let \(V_1, V_2, \ldots \) be a sequence of sets each containing \(p \) such that \(V_k \in \mathcal{B} \) for each \(k = 1, 2, \ldots \) and \(\bigcap_{k=1}^{\infty} V_k = (p) \). Then for each \(k \) there exists \(x_k \in V_k \) such that \(f(x_k) \) is not in \(Y(A) \cup W \). Since \(Y(A) \cup W \) is open and \(Y \) is compact, \(Y = Y(A) \cup W \) is compact. Thus there exists a subsequence of \((f(x_k))_{k=1}^{\infty} \) which converges to some point \(y \in Y = Y(A) \cup W \), and hence \(y \) is a limit point of \(f \) at \(p \) which is in \(Y(B) \). Since \(f(p) \in Y(A) \) and \(f(p) \) is a limit point of \(f \) at \(p \), there exists \(x \in U \) such that \(f(x) \in C \). This is a contradiction. Similarly, if \(p \in B \cap U \) and \(W \) is an open set containing \(C \), then there exists \(V \in \mathcal{B} \) containing \(p \) such that if \(x \in \text{cl}(V) \), then \(f(x) \in Y(B) \cup W \).

Let \(W_1, W_2, \ldots \) be a sequence of open subsets of \(Y \) such that \(\bigcap_{k=1}^{\infty} W_k = C \). Let \(p_1 \in A \cap P' \). Choose \(V_1 \in \mathcal{B} \) such that \(p_1 \in V_1 \), the diameter of \(V_1 < 1 \), \(\text{cl}(V_1) \subseteq U \), and if \(x \in \text{cl}(V_1) \), then \(f(x) \in Y(A) \cup W_1 \). Since \(B \cap P' \) is dense in \(P' \), there is a \(p_2 \) in \(B \cap P' \cap V_1 \). Let \(V_2 \in \mathcal{B} \) such that \(p_2 \in V_2 \), \(V_2 \subseteq V_1 \), the diameter of \(V_2 < \frac{1}{2} \), and if \(x \in \text{cl}(V_2) \), then \(f(x) \in Y(B) \cup W_2 \). Continuing in this manner, we obtain a sequence of points \((p_k)_{k=1}^{\infty} \) and a sequence of open sets \((V_k)_{k=1}^{\infty} \) such that for each \(k \), the following conditions are satisfied.

1. \(p_k \in V_k \cap P', V_k \in \mathcal{B}, V_{k+1} \subseteq V_k \), the diameter of \(V_k < 1/k \).
2. If \(x \in \text{cl}(V_k) \) and \(k \) is odd, then \(f(x) \in Y(A) \cup W_k \).
3. If \(x \in \text{cl}(V_k) \) and \(k \) is even, then \(f(x) \in Y(B) \cup W_k \).

Note that the set \(\bigcap_{k=1}^{\infty} \text{cl}(V_k) \) consists of a single point, say \(p \).

Since \(\text{cl}(V_1) \subseteq U \), \(p \in U \). Since \(p \in \text{cl}(V_k) \) for each \(k = 1, 2, \ldots \), it follows that \(f(p) \) is in each \(W_k \). Thus \(f(p) \in \bigcap_{k=1}^{\infty} W_k \), and so \(f(p) \in C \). This is a contradiction, and hence \(f \) is Darboux \(\mathcal{B} \).

We now assume \(f \) is Darboux \(\mathcal{B} \) and prove that \(f \) is Darboux \(\mathcal{B} \) at each point of \(X \). The fact that \(f \) has property \(L \) of the definition of Darboux \(\mathcal{B} \) at each point is obvious. We now prove that \(f(p) \) is a limit point of \(f \) at \(p \).

Let \((W_k)_{k=1}^{\infty} \) be a descending sequence of open subsets of \(Y \) each containing \(f(p) \) such that \(\bigcap_{k=1}^{\infty} W_k = (f(p)) \). Let \((V_k)_{k=1}^{\infty} \) be a descending sequence of sets in \(\mathcal{B} \) each containing \(p \) such that \(\bigcap_{k=1}^{\infty} V_k = (p) \). Since \(f \) is Darboux \(\mathcal{B} \) and \(p \in V_k \), \(f(V_k) \) is a connected subset of \(Y \) which contains \(f(p) \) for each \(k = 1, 2, \ldots \). Now there exists \(x_k \in V_k \) such that \(x_k \neq p \) and \(f(x_k) \in W_k \) for each \(k = 1, 2, \ldots \). The sequence \((x_k)_{k=1}^{\infty} \) converges to \(p \) and the sequence \((f(x_k))_{k=1}^{\infty} \) converges to \(f(p) \). Therefore \(f(p) \) is a limit point of \(f \) at \(p \).

We now prove part (2) of the definition of Darboux \(\mathcal{B} \) at a point. Let \(U \)
\(\in \mathcal{B}, p \in U, \) and let \(a \) and \(b \) be limit points of \(f \) at \(p \) relative to \(U \). Let \(C \) be a closed subset of \(Y \) which separates \(a \) from \(b \). Thus there exists two mutually separated open sets \(V \) and \(W \) such that \(Y - C = V \cup W, a \in V \) and \(b \in W \). Since \(a \) and \(b \) are limit points of \(f \) at \(p \), there exist \(y, z \in U \) such that \(f(y) \in V \) and \(f(z) \in W \). Thus \(C \) separates \(f(y) \) and \(f(z) \). Since \(f(U) \) is connected, there exists \(x \in U \) such that \(f(x) \in C \), and we are finished.

REFERENCES