A note on Jones' function
Author:
John Rosasco
Journal:
Proc. Amer. Math. Soc. 49 (1975), 501504
MSC:
Primary 54F20
MathSciNet review:
0367946
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: For each point of a continuum , F. B. Jones [5, Theorem 2] defines to be the closed set consisting of all points of such that is not aposyndetic at with respect to . Suppose is a plane continuum and for any positive real number there are at most a finite number of complementary domains of of diameter greater than . In this paper it is proved that for each point of , the set is connected.
 [1]
Charles
L. Hagopian, A cut point theorem for plane continua, Duke
Math. J. 38 (1971), 509–512. MR 0284980
(44 #2204)
 [2]
Charles
L. Hagopian, Arcwise connectivity of semiaposyndetic plane
continua, Pacific J. Math. 37 (1971), 683–686.
MR
0307202 (46 #6322)
 [3]
, Concerning Jones's function , Notices Amer. Math. Soc. 19 (1972), A779. Abstract #698G2.
 [4]
F.
Burton Jones, A characterization of a
semilocallyconnected plane continuum, Bull.
Amer. Math. Soc. 53
(1947), 170–175. MR 0019301
(8,397e), http://dx.doi.org/10.1090/S000299041947087760
 [5]
F.
Burton Jones, Concerning nonaposyndetic continua, Amer. J.
Math. 70 (1948), 403–413. MR 0025161
(9,606h)
 [6]
R.
L. Moore, Foundations of point set theory, Revised edition.
American Mathematical Society Colloquium Publications, Vol. XIII, American
Mathematical Society, Providence, R.I., 1962. MR 0150722
(27 #709)
 [7]
Gordon
Thomas Whyburn, Analytic Topology, American Mathematical
Society Colloquium Publications, v. 28, American Mathematical Society, New
York, 1942. MR
0007095 (4,86b)
 [1]
 C. L. Hagopian, A cut point theorem for plane continua, Duke Math. J. 38 (1971), 509512. MR 44 #2204. MR 0284980 (44:2204)
 [2]
 C. L. Hagopian, Arcwise connectivity of semiaposyndetic plane continua, Pacific J. Math. 37 (1971), 683686. MR 0307202 (46:6322)
 [3]
 , Concerning Jones's function , Notices Amer. Math. Soc. 19 (1972), A779. Abstract #698G2.
 [4]
 F. B. Jones, A characterization of a semilocallyconnected plane continuum, Bull. Amer. Math. Soc. 53 (1947), 170175. MR 8, 397. MR 0019301 (8:397e)
 [5]
 , Concerning nonaposyndetic continua, Amer. J. Math. 70 (1948), 403413. MR 9, 606. MR 0025161 (9:606h)
 [6]
 R. L. Moore, Foundations of point set theory, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 13, Amer. Math. Soc., Providence, R. I., 1962. MR 27 #709. MR 0150722 (27:709)
 [7]
 G. T. Whyburn, Analytic topology, Amer. Math. Soc. Colloq. Publ., vol. 28, Amer. Math. Soc., Providence, R. I., 1942. MR 4, 86. MR 0007095 (4:86b)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
54F20
Retrieve articles in all journals
with MSC:
54F20
Additional Information
DOI:
http://dx.doi.org/10.1090/S0002993919750367946X
PII:
S 00029939(1975)0367946X
Keywords:
Jones' function ,
aposyndesis,
folded complementary domain,
nonlocally connected plane continua
Article copyright:
© Copyright 1975
American Mathematical Society
