Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A note on Jones' function $ K$


Author: John Rosasco
Journal: Proc. Amer. Math. Soc. 49 (1975), 501-504
MSC: Primary 54F20
DOI: https://doi.org/10.1090/S0002-9939-1975-0367946-X
MathSciNet review: 0367946
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For each point $ x$ of a continuum $ M$, F. B. Jones [5, Theorem 2] defines $ K(x)$ to be the closed set consisting of all points $ y$ of $ M$ such that $ M$ is not aposyndetic at $ x$ with respect to $ y$. Suppose $ M$ is a plane continuum and for any positive real number $ \epsilon $ there are at most a finite number of complementary domains of $ M$ of diameter greater than $ \epsilon $. In this paper it is proved that for each point $ x$ of $ M$, the set $ K(x)$ is connected.


References [Enhancements On Off] (What's this?)

  • [1] C. L. Hagopian, A cut point theorem for plane continua, Duke Math. J. 38 (1971), 509-512. MR 44 #2204. MR 0284980 (44:2204)
  • [2] C. L. Hagopian, Arcwise connectivity of semi-aposyndetic plane continua, Pacific J. Math. 37 (1971), 683-686. MR 0307202 (46:6322)
  • [3] -, Concerning Jones's function $ K$, Notices Amer. Math. Soc. 19 (1972), A-779. Abstract #698-G2.
  • [4] F. B. Jones, A characterization of a semi-locally-connected plane continuum, Bull. Amer. Math. Soc. 53 (1947), 170-175. MR 8, 397. MR 0019301 (8:397e)
  • [5] -, Concerning non-aposyndetic continua, Amer. J. Math. 70 (1948), 403-413. MR 9, 606. MR 0025161 (9:606h)
  • [6] R. L. Moore, Foundations of point set theory, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 13, Amer. Math. Soc., Providence, R. I., 1962. MR 27 #709. MR 0150722 (27:709)
  • [7] G. T. Whyburn, Analytic topology, Amer. Math. Soc. Colloq. Publ., vol. 28, Amer. Math. Soc., Providence, R. I., 1942. MR 4, 86. MR 0007095 (4:86b)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54F20

Retrieve articles in all journals with MSC: 54F20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0367946-X
Keywords: Jones' function $ K$, aposyndesis, folded complementary domain, nonlocally connected plane continua
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society