A NOTE ON $C_c(X)$

G. D. RICHARDSON AND D. C. KENT

ABSTRACT. When X is a locally convex topological linear space, the function algebra $C_c(X)$ (with continuous convergence) can have a closure operator which has infinitely many distinct iterations. The reverse situation is also possible: X can be a locally compact c-embedded convergence space whose closure operator has infinitely many distinct iterations, whereas $C_c(X)$ is a topological space.

1. The study of $C_c(X)$, the function algebra of all real-valued continuous functions on a convergence space X, equipped with the continuous convergence structure, was initiated by Cook and Fischer [4] and has been further developed by subsequent investigators. Arens [1] showed in 1946 that, for a completely regular topological space X, $C_c(X)$ is topological iff X is locally compact. The same theorem has been established [6, Theorem 3.6] in the more general case where X is an ω-regular convergence space. Consequently X can be topological when $C_c(X)$ is not, and $C_c(X)$ can be topological when X is not.

This note is concerned with the following question: If X is a topology, then how far can $C_c(X)$ deviate from being a topology, and vice versa. Convergence spaces do not, in general, have idempotent closure operators, and the number of distinct iterations of the closure operator of a convergence space gives an indication of how nontopological the space is. We will refer to a convergence space whose closure operator has infinitely many distinct iterations as being highly nontopological.

A convergence space is c-embedded if the natural map from X into $C_cC_c(X)$ is a homeomorphism, in which case X is homeomorphic to Hom$_cC_c(X)$ (by [3, Theorem 1]). A convergence space is said to be locally compact if every convergent filter contains a compact set.

Theorem 1. There is a highly nontopological, locally compact, c-embedded convergence space X such that $C_c(X)$ is a topological space.

Received by the editors April 10, 1974.

Key words and phrases. Convergence space, continuous convergence, c-embedded space, highly nontopological space.
Theorem 2. There is a locally convex topological linear space X such that $C_c(X)$ is a highly nontopological convergence space.

These theorems both follow from one example, the space X_0 constructed in §3. Their proofs will be deferred until §4.

2. For notation, terminology, and background information, see [2] or [3]. The term space will always mean convergence space. A space X is regular if $\mathcal{F} \to x$ implies that $\text{cl}_X\mathcal{F} \to x$ ("cl" is the closure operator for X; \mathcal{F} a filter on X); X is ω-regular if $\mathcal{F} \to x$ implies $\text{cl}_{\omega X}\mathcal{F} \to x$ (where ωX is the finest completely regular space coarser than X on the same underlying set). A pretopological space (sometimes called principal space or neighborhood space) is one in which the neighborhood filter for each point x converges to x; X is pseudo-topological if $\mathcal{F} \to x$ whenever each ultrafilter finer than \mathcal{F} converges to x. The initial lemma is Theorem 2.4 of [6].

Lemma 1. A space X is c-embedded iff X is Hausdorff, ω-regular, and pseudo-topological.

For any space X, let λX denote the topological modification of X; that is, λX is the finest topological space on the same underlying set which is coarser than X.

Lemma 2. Let X be a Hausdorff, locally compact, regular, pseudo-topological space such that λX is completely regular. Then X is c-embedded.

Proof. By Lemma 1, it is sufficient to show that X is ω-regular. From [5, Corollary 2.4] it follows that a compact, regular, Hausdorff space has an idempotent closure operator. Thus, if \mathcal{F} is a convergent filter on X, $\text{cl}_X\mathcal{F}$ must have a filter base of compact sets, and so $\text{cl}_X\mathcal{F} = \text{cl}_{\lambda X}\mathcal{F}$. But, by assumption, $\text{cl}_{\lambda X}\mathcal{F} = \text{cl}_{\omega X}\mathcal{F}$, and so X is ω-regular.

The next lemma describes a method for constructing a base of λX-open neighborhoods for a point in a pretopological space. The straightforward proof is omitted.

Let N denote the set of natural numbers, including 0.

Lemma 3. In a pretopological space X, the λX-neighborhood filter at a point x has a filter base of sets of the form $\bigcup \{V_n : n \in N\}$, where V_0 is an X-neighborhood of x, and V_n is defined recursively as a union of X-neighborhoods of points z in V_{n-1}.

If X is a linear space with a convergence structure relative to which the linear operations are continuous, then X is called a convergence linear
space. If X is a convergence linear space, and each filter F converging to x contains a filter \mathcal{G} converging to x which has a filter base of convex sets, then X is said to be locally convex. A detailed discussion of these concepts can be found in [7].

Lemma 4. For any space X, $C_c(X)$ is a locally convex convergence linear space.

Proof. It is well known that $C_c(X)$ is a convergence linear space, so we will show only that $C_c(X)$ is locally convex. Recall that a filter \mathcal{A} converges to f in $C_c(X)$ iff $\mathcal{A}(F) \to f(x)$ on the real line whenever $F \to x$ in X. Assume $\mathcal{A} \to f$, and let \mathcal{A}_0 be the filter on $C_c(X)$ generated by the convex hulls of members of \mathcal{A}. Let $F \to x$ on X, and let W be a closed, convex neighborhood of $f(x)$ on the real line. Choose $A \in \mathcal{A}$, $F \in \mathcal{F}$ such that $A(F) \subset W$. If A_0 is the convex hull of A, then it follows easily that $A_0(F) \subset W$. Thus $\mathcal{A}_0 \to f$, and X is locally convex.

3. We shall now construct a locally compact, c-embedded, pretopological space X_0 whose closure operator has infinitely many distinct iterations. For each $n \in \mathbb{N}$, let $S^n = \{x^n_j: j \in \mathbb{N}\}$ be a set of distinct elements, and assume $S^n_i \cap S^n_j$ is empty if $i \neq j$. Let $X_0 = \bigcup_{n \in \mathbb{N}} S^n$. Furthermore, for each $n \in \mathbb{N}$, let S^n_j be partitioned into infinitely many disjoint sets $\{S^n_k: k \in \mathbb{N}\}$. Of course, an element x^n_j of S^n must be in some member S^n_k of the partition, but no relationship between j and k is assumed.

A pretopology will be constructed on the set X_0 by defining the neighborhood filter for each x in X_0 as follows:

1. $\mathcal{N}(x^0_j)$ is the ultrafilter generated by $\{x^0_j\}$, all j in \mathbb{N};
2. For $i \geq 1$ and j in \mathbb{N}, $\mathcal{N}(x^i_j)$ is the filter generated by all sets of the form $(S^{i-1}_j - F) \cup \{x^i_j\}$, where F is any finite subset of X_0. In the discussion that follows, we will refer to $\{x^0_j\}$ as the basic X_0-neighborhood of x^0_j, for all j in \mathbb{N}, and we will refer to a set of the form $(S^{i-1}_j - F) \cup \{x^i_j\}$ as described in (2) as a basic X_0-neighborhood of x^i_j, for all $i \geq 1$ and j in \mathbb{N}.

Note that basic neighborhoods of distinct points are disjoint.

By our construction, X_0 is a Hausdorff pretopological (hence, pseudotopological) space. Note that a basic neighborhood of any point in X_0 is compact (hence, closed), and it follows that X_0 is locally compact and regular. To show that X_0 is c-embedded, it remains, in view of Lemma 2, to show that λX is completely regular. This will be accomplished by showing that, for any point x^i_j in X_0, that x^i_j has a base of λX-neighborhoods which are both open and closed.
For each \(i, j \in \mathbb{N} \), let \(W_j^i \) be a \(\lambda X_0 \)-neighborhood of \(x_j^i \) constructed in the manner described in Lemma 3, where each \(X_0 \)-neighborhood of a point \(x_m^k \) used in this construction is a basic \(X_0 \)-neighborhood of \(x_m^k \). It follows from Lemma 3 that \(W_j^i \) is open for all \(i, j \in \mathbb{N} \); we will next show that each such set is also closed.

For arbitrarily chosen indices \(i \) and \(j \), assume that an ultrafilter \(\mathcal{G} \) containing \(W_j^i \) converges to a point \(x_n^m \). By the construction of \(X_0 \), exactly one of the following assertions must be true: (a) \(\mathcal{G} \) is the ultrafilter generated by \(\{ x_n^m \} \) (in which case \(x_n^m \in W_j^i \)); (b) \(\mathcal{G} \) contains \(S_n^m \). In the latter case, one of the basic \(X_0 \)-neighborhoods involved in the construction of \(W_j^i \) must be of the form \(S_n^m - F \), where \(F \) is finite, and this can happen only if \(x_n^m \) itself is in \(W_j^i \). Thus \(W_j^i \) is both open and closed. Since sets of the form \(W_j^i \) form a base for the \(\lambda X_0 \)-neighborhood filter at \(x_j^i \), \(\lambda X_0 \) is zero-dimensional, and hence completely regular.

We have now established, usingLemma 2, that \(X_0 \) is c-embedded and locally compact. It remains to show that \(X_0 \) is highly non-topological. Note that \(\text{cl}_{X_0} S^n_0 = S^n_0 \cup S_1 \), and \(\text{cl}_{X_0} S^n_0 = \bigcup_{k \leq n} S^k_0 \). Thus the closure operator for \(X_0 \) has infinitely many distinct iterations.

4. It remains to prove the two theorems. To prove Theorem 1, we make use of Theorem 3.2 [6] which asserts that when \(X \) is locally compact, \(C_c(X) \) is a topology; thus Theorem 1 is established by taking \(X = X_0 \).

To prove Theorem 2, let \(X = C_c(X_0) \); by Lemma 4, \(X \) is locally convex, and so, by our preceding observations, a locally convex topological linear space. Since \(X_0 \) is c-embedded, \(X_0 \) is homeomorphic to \(\text{Hom}_c C_c(X_0) \). But \(\text{Hom}_c C_c(X_0) \) is a closed subspace of \(C_c C_c(X_0) = C_c(X) \), and it follows from [5, Corollary 1.4] that the closure operator for \(C_c(X) \) has at least as many distinct iterations as does the closure operator of \(\text{Hom}_c C_c(X_0) \) (i.e., infinitely many). Thus \(C_c(X) \) is highly non-topological.

The fact that a locally compact, c-embedded space can be highly non-topological would appear to be of some interest in itself. Another corollary of some interest is the fact (which follows from Lemma 4 and the proof of Theorem 2) that a locally convex linear convergence space can be highly non-topological.

REFERENCES

DEPARTMENT OF MATHEMATICS, EAST CAROLINA UNIVERSITY, GREENVILLE, NORTH CAROLINA 27834

DEPARTMENT OF MATHEMATICS, WASHINGTON STATE UNIVERSITY, PULLMAN, WASHINGTON 99163