A note on
Authors:
G. D. Richardson and D. C. Kent
Journal:
Proc. Amer. Math. Soc. 49 (1975), 441-445
MSC:
Primary 54C35; Secondary 54A20
DOI:
https://doi.org/10.1090/S0002-9939-1975-0370483-X
MathSciNet review:
0370483
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: When is a locally convex topological linear space, the function algebra
(with continuous convergence) can have a closure operator which has infinitely many distinct iterations. The reverse situation is also possible:
can be a locally compact
-embedded convergence space whose closure operator has infinitely many distinct iterations, whereas
is a topological space.
- [1] R. F. Arens, A topology for spaces of transformations, Ann. of Math. (2) 47 (1946), 480-495. MR 8, 165. MR 0017525 (8:165e)
- [2] E. Binz, Bemerkungen zu limitierten Funktionenalgebren, Math. Ann. 175 (1968), 169-184. MR 36 #4513. MR 0221461 (36:4513)
- [3]
E. Binz, Zu den Beziehungen zwischen
-einbettbaren Limesräumen und ihren limitierten Funktionenalgebren, Math. Ann. 181 (1969), 45-52. MR 39 #7552. MR 0246248 (39:7552)
- [4] C. H. Cook and H. R. Fischer, On equicontinuity and continuous convergence, Math. Ann. 159 (1965), 94-104. MR 31 #3995. MR 0179752 (31:3995)
- [5] D. C. Kent and G. D. Richardson, The decomposition series of a convergence space, Czechoslovak Math. J. 23 (1973), 437-446. MR 0322773 (48:1134)
- [6]
M. Schroder, G. Richardson, K. McKennon and D. Kent, Continuous convergence in
, Pacific J. Math. (to appear). MR 0370482 (51:6709)
- [7] C. Wingren, Locally convex limit spaces, Acta Acad. Aboensis Ser. B 33 (1973), 1-14. MR 0324360 (48:2712)
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54C35, 54A20
Retrieve articles in all journals with MSC: 54C35, 54A20
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1975-0370483-X
Keywords:
Convergence space,
continuous convergence,
-embedded space,
highly nontopological space
Article copyright:
© Copyright 1975
American Mathematical Society