Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Some universally pierced arcs in $ E\sp{3}$


Author: L. D. Loveland
Journal: Proc. Amer. Math. Soc. 49 (1975), 469-474
MSC: Primary 57A10
DOI: https://doi.org/10.1090/S0002-9939-1975-0370590-1
MathSciNet review: 0370590
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A subset $ X$ of $ {E^3}$ is said to be universally pierced if each $ 2$-sphere containing $ X$ can be pierced by a tame arc at each point of $ X$. We show that an arc $ A$ is universally pierced provided $ A$ has a shrinking point $ p$ such that either $ p$ lies in a tame arc in $ A$ or $ {E^3} - A$ has $ 1$-ALG at $ p$. Applying this result we show the existence of infinitely many wild universally pierced arcs.


References [Enhancements On Off] (What's this?)

  • [1] W. R. Alford, Some ``nice'' wild $ 2$-spheres in $ {E^3}$, Topology of $ 3$-Manifolds and Related Topics (Proc. Univ. of Georgia Inst., 1961), Prentice-Hall, Englewood Cliffs, N. J., 1962, pp. 29-33. MR 25 #4504. MR 0141091 (25:4504)
  • [2] C. E. Burgess and J. W. Cannon, Embeddings of surfaces in $ {E^3}$, Rocky Mountain J. Math. 1 (1971), 259-344. MR 43 #4008. MR 0278277 (43:4008)
  • [3] J. W. Cannon, ULC properties in neighborhoods of embedded surfaces and curves in $ {E^3}$, Canad. J. Math. 25 (1973), 31-73. MR 47 #2589. MR 0314037 (47:2589)
  • [4] R. H. Fox and E. Artin, Some wild cells and spheres in three-dimensional space, Ann. of Math (2) 49 (1948), 979-990. MR 10, 317. MR 0027512 (10:317g)
  • [5] D. S. Gillman, Side approximation, missing an arc, Amer. J. Math. 85 (1963), 459-476. MR 28 #3407. MR 0160193 (28:3407)
  • [6] L. D. Loveland, Piercing points of crumpled cubes, Trans. Amer. Math. Soc. 143 (1969), 145-152. MR 40 #883. MR 0247619 (40:883)
  • [7] D. R. McMillan, Some topological properties of piercing points, Pacific J. Math. 22 (1967), 313-322. MR 35 #7319. MR 0216486 (35:7319)
  • [8] -, Piercing a disk along a cellular set, Proc. Amer. Math. Soc. 19 (1968), 153-157. MR 36 #3332. MR 0220266 (36:3332)
  • [9] Harvey Rosen, Piercing points on a special arc, Proc. Amer. Math. Soc. 46 (1974), 438-442. MR 0356025 (50:8498)
  • [10] R. L. Wilder, Topology of manifolds, Amer. Math. Soc. Colloq. Publ., vol. 32, Amer. Math. Soc., Providence, R. I., 1963. MR 32 #440. MR 0182958 (32:440)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57A10

Retrieve articles in all journals with MSC: 57A10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0370590-1
Keywords: Piercing points, pierced sets, universally pierced, tame and wild arcs, surfaces in $ {E^3}$, shrinking points, $ 1$-ALG sets, cellular arcs
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society