TEST MODULES
T. CHEATHAM AND R. CUMBIE

ABSTRACT. The results of this paper arose from an investigation of the class of \(\Sigma \)-modules, i.e. those modules \(M \) for which \(\text{Hom}_R(M, -) \) commutes with direct sums. A module \(T \) is called a test module if \(\text{Hom}_R(M, -) \) commutes with direct sums of copies of \(T \) only when \(M \) is a \(\Sigma \)-module. Test modules are characterized and their relation to cogenerators is investigated.

Throughout \(N \) will denote the set of natural numbers, \(R \) will denote an associative ring with identity, and module will mean unitary left \(R \)-module. For modules \(L \) and \(M \) and indexing set \(I \), \(L^{(I)} \) will denote the direct sum of \(|I| \) copies of \(L \) and, for convenience, \(\text{Hom}_R(M, L) \) will be written \(\text{Hom}(M, L) \).

The modules \(M \) for which \(\text{Hom}(M, -) \) commutes with direct sums have been called \(\Sigma \)-modules by Rentschler [5]. A systematic study of \(\Sigma \)-modules is given in his thesis [4]. \(\Sigma \)-modules have been considered by at least three other authors [1, p. 54], [2], and [3].

It follows from the definition that \(M \) is a \(\Sigma \)-module if and only if, for each family of modules \(\{L_i|i \in I\} \) and for each \(R \)-homomorphism \(f: M \to \bigoplus\{L_i|i \in I\} \), \(\pi_i f = 0 \) for all but a finite number of \(i \in I \). We will consistently use \(\pi_i: \bigoplus\{L_i|i \in I\} \to L_i \) to denote the obvious projection map. It is possible to place certain restrictions on the families \(\{L_i|i \in I\} \) which must be considered. It is only necessary to consider families, each of whose members is an injective module; the indexing set \(I \) may be taken to be countable. The following theorem gives a further reduction which is useful.

Theorem 1. A module \(M \) is a \(\Sigma \)-module if and only if, for each module \(L \), \(\text{Hom}(M, -) \) commutes with direct sums of the module \(L \).

Proof. The "only if" part is trivial. For the "if" part, begin with a family \(\{L_i|i \in I\} \) of modules; set \(L = \bigoplus\{L_i|i \in I\} \); and let \(\mu_i: L^{(I)} \to L \) denote the projection map. Now let \(f \in \text{Hom}(M, L) \) and define \(\bar{f}: M \to L \).
\[L^{(i)}(\pi_{ij} f)(m) = y \in L, \text{ where } y = 0 \text{ if } i \neq j \text{ and } y = (\pi_j f)(m) \text{ if } i = j. \]

\[f \text{ is a homomorphism and the assumption yields a finite subset } J \text{ of } I \text{ such that if } j \in I - J, \left(\mu_j f\right)(M) = 0 \in L. \text{ If } (\pi_j f)(M) \neq 0, \text{ then } \left(\pi_i \mu_j f\right)(M) \neq 0 \text{ and it follows that } i \in J. \] This shows that \(M \) is a \(\Sigma \)-module.

Remark. It can be shown that one need consider only countable direct sums of the various modules \(L \).

This theorem suggests the question: Is there one module \(T \) so that if \(\text{Hom}(M, -) \) commutes with direct sums of \(T \) then \(M \) is a \(\Sigma \)-module? Such a module \(T \) would serve as a "test module" for \(\Sigma \)-modules. In fact we adopt this as our definition of a test module. We will show next that test modules (always) exist and are quite familiar modules.

Theorem 2. A module \(T \) is a test module if and only if, for each module \(X \neq 0 \), \(\text{Hom}(X, T) \neq 0 \).

Proof. Suppose \(T \) is a test module and \(\text{Hom}(X, T) = 0 \) for a module \(X \). Then \(\text{Hom}(X^{(N)}, T) = 0 \) so \(X^{(N)} \) is a \(\Sigma \)-module. This is impossible if \(X \neq 0 \). Thus \(X = 0 \).

Conversely, suppose \(T \) is a module satisfying: For each module \(X \neq 0 \), \(\text{Hom}(X, T) \neq 0 \). Further assume that \(X \) is a module such that \(\text{Hom}(X, -) \) commutes with direct sums of \(T \). We must show that \(X \) is a \(\Sigma \)-module. Consider any module \(L \) and \(f \in \text{Hom}(X, L^{(N)}) \). Assume, by way of contradiction, that the set \(K = \{ n \in N \mid (p_n f)(X) \neq 0 \} \) is an infinite set, where \(p_n: L^{(N)} \to L \) is the \(n \)th projection. For each \(k \in K \), select \(\neq b_k \in \text{Hom}(p_k f(X), M) \).

If \(n \in N \) and \(n \notin K \) let \(b_n = 0: p_n f(X) \to M \). If \(k \in K \) there exists \(x_k \in X \) such that \(b_k(p_k f(x_k)) \neq 0 \). Now put \(h = \bigoplus_{n \in N} b_n: \bigoplus_{n \in N} p_n f(X) \to M^{(N)} \).

One easily checks that \(hf \in \text{Hom}(X, M^{(N)}) \). Showing \(\pi_k (hf) \neq 0 \) if \(k \in K \) will contradict the fact that \(\text{Hom}(X, -) \) commutes with direct sums of \(T \).

Let \(k \in K \),

\[hf(x_k) = h(f(x_k)) = h(p_n f(x_k)) = \left(\bigoplus_{n \in N} b_n\right) (p_n f(x_k)) = (b_n (p_n f(x_k))). \]

From above the \(k \)th component is nonzero. Thus the \(k \)th projection of \(hf \) is nonzero. With the help of Theorem 1, this completes the proof.

Corollary. A cogenerator (for the category of left \(R \)-modules) is a test module.

This shows, in answer to the question above, that test modules (always) exist but it raises another question. When is a test module a cogenerator? Before giving the answer we require the following fact.

Lemma. For a module \(M \) there is a submodule \(H \) of \(M \) and a simple
module S such that M/H can be embedded in $\mathcal{I}(S)$, the injective hull of S.

Proof. Choose $K \subseteq L \subseteq M$ with L/K simple. If $L/K \subseteq M/K$ is not essential, choose $H/K \subseteq M/K$ such that $H/K \cap L/K = 0$ and H/K is maximal with respect to this property. Then $(L + H)/H$ is simple and essential in M/H.

The next theorem may be of independent interest.

Theorem 3. For a ring R the following are equivalent:

(a) every test module is a cogenerator;

(b) for each simple module S, and each submodule $L \subseteq \mathcal{I}(S)$, $\mathcal{I}(S)/L$ contains an isomorphic copy of $\mathcal{I}(S)$.

Proof. Assume (b) holds. Let C be a test module and consider a simple module $S \neq 0$. By Theorem 2 we choose $0 \neq f \in \text{Hom}(\mathcal{I}(S), C)$. By hypothesis $\mathcal{I}(S) \cong \mathcal{I}(S)/\text{Ker } f \subset C$ so C is a cogenerator.

Now assume (b) fails. Then for some simple module S, we have $N \subseteq \mathcal{I}(S)$ such that $\mathcal{I}(S)/N$ does not contain a copy of $\mathcal{I}(S)$. Let

$$C = (\mathcal{I}(S)/N) \oplus \left(\bigoplus \{ \mathcal{I}(U) \mid U \text{ is simple and } U \not\cong S \} \right) \oplus \left(\bigoplus \{ M \mid M \subseteq \mathcal{I}(S) \} \right).$$

C does not contain a copy of $\mathcal{I}(S)$ so is not a cogenerator. However, we will show that C is a test module by using Theorem 2.

Let $X \neq 0$ be a module. By the Lemma we choose a simple module U such that $X/Y \subseteq \mathcal{I}(U)$ for some submodule $Y \subseteq X$. If $U \cong S$ then, trivially, $\text{Hom}(X, C) \neq 0$. We consider the two cases (1) $X/Y \cong \mathcal{I}(S)$, (2) $X/Y \subset \mathcal{I}(S)$, but $X/Y \not\cong \mathcal{I}(S)$. In the first case, use $\mathcal{I}(S)/N$ to get the nonzero element of $\text{Hom}(X, C)$; and, in the second case, use one of the M's, $M \subseteq \mathcal{I}(S)$. This completes the proof.

The authors would like to thank Professor E. Enochs for the clever construction in the proof of Theorem 3. We note that Tiwary [6] and Vamos [7] have shown that, over an integral domain R, $\mathcal{I}(S) \cong \mathcal{I}(S)/K$ for all simple modules S and all submodules $K \subseteq \mathcal{I}(S)$, if and only if, R_p is a PID for all prime ideals P of R. Thus, for example, over a Dedekind domain a test module is a cogenerator.

The condition (b) of Theorem 3 appears to be interesting. Among the things it implies are: The socle of $\mathcal{I}(S)/K$, $K \subseteq \mathcal{I}(S)$, consists of copies of S and is essential in $\mathcal{I}(S)/K$.

REFERENCES

