Hopf algebras with nonsemisimple antipode
Authors:
Earl J. Taft and Robert Lee Wilson
Journal:
Proc. Amer. Math. Soc. 49 (1975), 269276
MSC:
Primary 16A24
MathSciNet review:
0376742
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: An example is given to show that the antipode of a finite dimensional Hopf algebra over a field of prime characteristic need not be semisimple. (For examples were previously known.) The example is a pointed irreducible Hopf algebra (with antipode ) of dimension such that .
 [1]
Nathan
Jacobson, Lie algebras, Interscience Tracts in Pure and
Applied Mathematics, No. 10, Interscience Publishers (a division of John
Wiley & Sons), New YorkLondon, 1962. MR 0143793
(26 #1345)
 [2]
Richard
Gustavus Larson, Orders in Hopf algebras, J. Algebra
22 (1972), 201–210. MR 0299658
(45 #8706)
 [3]
David
E. Radford, A free rank 4 Hopf algebra with
antipode of order 4, Proc. Amer. Math. Soc.
30 (1971), 55–58.
MR
0279161 (43 #4887), http://dx.doi.org/10.1090/S00029939197102791615
 [4]
David
E. Radford, The order of the antipode of a finite dimensional Hopf
algebra is finite, Amer. J. Math. 98 (1976),
no. 2, 333–355. MR 0407069
(53 #10852)
 [5]
Moss
E. Sweedler, Hopf algebras, Mathematics Lecture Note Series,
W. A. Benjamin, Inc., New York, 1969. MR 0252485
(40 #5705)
 [6]
Earl
J. Taft, The order of the antipode of finitedimensional Hopf
algebra, Proc. Nat. Acad. Sci. U.S.A. 68 (1971),
2631–2633. MR 0286868
(44 #4075)
 [7]
Earl
J. Taft and Robert
Lee Wilson, On antipodes in pointed Hopf algebras, J. Algebra
29 (1974), 27–32. MR 0338053
(49 #2820)
 [1]
 N. Jacobson, Lie algebras, Interscience Tracts in Pure and Appl. Math., no. 10, Interscience, New York, 1962. MR 26 #1345. MR 0143793 (26:1345)
 [2]
 R. G. Larson, Orders in Hopf algebras, J. Algebra 22 (1972), 201210. MR 45 #8706. MR 0299658 (45:8706)
 [3]
 D. E. Radford, A free rank 4 Hopf algebra with antipode of order 4, Proc. Amer. Math. Soc. 30 (1971), 5558. MR 43 #4887. MR 0279161 (43:4887)
 [4]
 , The order of the antipode of a finite dimensional Hopf algebra is finite, Amer. J. Math. (to appear). MR 0407069 (53:10852)
 [5]
 M. E. Sweedler, Hopf algebras, Math. Lecture Notes Series, Benjamin, New York, 1969. MR 40 #5705. MR 0252485 (40:5705)
 [6]
 E. J. Taft, The order of the antipode of finitedimensional Hopf algebra, Proc. Nat. Acad. Sci. U.S.A. 68 (1971), 26312633. MR 44 #4075. MR 0286868 (44:4075)
 [7]
 E. J. Taft and R. L. Wilson, On antipodes in pointed Hopf algebras, J. Algebra 29 (1974), 2732. MR 0338053 (49:2820)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
16A24
Retrieve articles in all journals
with MSC:
16A24
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939197503767429
PII:
S 00029939(1975)03767429
Article copyright:
© Copyright 1975
American Mathematical Society
