Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Duality between $ H\sp{p}$ and $ H\sp{q}$ and associated projections


Author: Walter Pranger
Journal: Proc. Amer. Math. Soc. 49 (1975), 342-348
MSC: Primary 30A78
DOI: https://doi.org/10.1090/S0002-9939-1975-0377064-2
MathSciNet review: 0377064
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If $ U/G$ represents a Riemann surface as the disk $ U$ modulo a discontinuous group $ G$ and if $ {L^p}/G$ denotes the $ {L^p}$ functions on the circle which are $ G$ invariant, then it is shown that $ {L^p}/G = {N_p} \oplus {K_p}$ if and only if $ {H^p}/G$ and $ {\bar H^q}/G$ are naturally dual. Here $ {K_p}$ is the subset of $ {L^p}/G$ consisting of those functions which are invariant and whose conjugates are invariant; $ {N_p}$ is $ E({H^p}) \cap E(\bar H_0^p)$ where $ E$ is the conditional expectation operator. $ {H^p}$ is the space of boundary values of holomorphic functions and $ 1 < p < \infty $.


References [Enhancements On Off] (What's this?)

  • [1] C. J. Earle and A. Marden, On Poincaré series with application to $ {H^p}$ spaces on bordered Riemann surfaces, Illinois J. Math. 13 (1969), 202-219. MR 38 #6047. MR 0237766 (38:6047)
  • [2] N. Dunford and J. T. Schwartz, Linear operators. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302. MR 0117523 (22:8302)
  • [3] F. Forelli, Bounded holomorphic functions and projections, Illinois J. Math. 10 (1966), 367-380. MR 33 #1754. MR 0193534 (33:1754)
  • [4] M. H. Heins, Symmetric Riemann surfaces and boundary problems, Proc. London Math. Soc. (3) 14a (1965), 129-143. MR 35 #4400. MR 0213540 (35:4400)
  • [5] -, Hardy classes on Riemann surfaces, Lecture Notes in Math., no. 98, Springer-Verlag, Berlin and New York, 1969. MR 40 #338. MR 0247069 (40:338)
  • [6] T. Andô, Contractive projections in $ {L_p}$ spaces, Pacific J. Math. 17 (1966), 391-405. MR 33 #566. MR 0192340 (33:566)
  • [7] P. L. Duren, Theory of $ {H^p}$ spaces, Pure and Appl. Math., vol. 38, Academic Press, New York, 1970. MR 42 #3552. MR 0268655 (42:3552)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30A78

Retrieve articles in all journals with MSC: 30A78


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0377064-2
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society