Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Homotopy smoothing certain PL-manifolds


Author: James A. Schafer
Journal: Proc. Amer. Math. Soc. 50 (1975), 399-402
MSC: Primary 57D10
DOI: https://doi.org/10.1090/S0002-9939-1975-0368020-9
MathSciNet review: 0368020
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown any simply connected almost parallelizable PL-manifold of dimension $ 4k + 2 \ne {2^j} - 2 \geq 6$ has the homotopy type of a smooth manifold if and only if $ M$ is stably parallelizable.


References [Enhancements On Off] (What's this?)

  • [1] M. Atiyah, Thom complexes, Proc. London Math. Soc. (3) 11 (1961), 291-310. MR 24 #A1727. MR 0131880 (24:A1727)
  • [2] J. Boardman and R. Vogt, Homotopy everything $ H$-spaces, Bull. Amer. Math. Soc. 74 (1968), 1117-1122. MR 38 #5215. MR 0236922 (38:5215)
  • [3] W. Browder and M. Hirsch, Surgery on piecewise linear-manifolds and applications, Bull. Amer. Math. Soc. 72 (1966), 959-963. MR 36 #890. MR 0217801 (36:890)
  • [4] W. Browder and E. Spanier, $ H$-spaces and duality, Pacific J. Math. 12 (1962), 411-414. MR 26 #1891. MR 0144346 (26:1891)
  • [5] W. Browder, The Kervaire invariant of framed manifolds and its generalizations, Ann. of Math. (2) 90 (1969), 157-186. MR 40 #4963. MR 0251736 (40:4963)
  • [6] G. Brumfiel, I. Madsen and J. Milgram, PL characteristic classes and cobordism, Ann. of Math. (2) 97 (1973), 82-159. MR 46 #9979. MR 0310881 (46:9979)
  • [7] J. Milnor, Microbundles and differentiable structures, Notes, Princeton University, Princeton, N. J., 1961.
  • [8] -, Microbundles. I, Topology 3 (1964), Suppl. 1, 53-80. MR 28 #4553b. MR 0161346 (28:4553b)
  • [9] J. Milnor and E. Spanier, Two remarks on fiber homotopy type, Pacific J. Math. 10 (1960), 505-509. MR 22 #8524. MR 0117750 (22:8524)
  • [10] D. Sullivan and C. P. Rourke, On the Kervaire obstruction, Ann. of Math. (2) 94 (1971), 397-413. MR 46 #4546. MR 0305416 (46:4546)
  • [11] C. T. C. Wall, Surgery on compact manifolds, Academic Press, New York, 1970. MR 0431216 (55:4217)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57D10

Retrieve articles in all journals with MSC: 57D10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0368020-9
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society