A FIXED POINT CRITERION FOR LINEAR REDUCTIVITY

PETER NORMAN

ABSTRACT. Let \(G \) be a linear algebraic group over an algebraically closed field. If for all actions of \(G \) on smooth schemes, the fixed point scheme is smooth, then \(G \) is linearly reductive under either of the additional assumptions: (a) the ground field is characteristic zero, or (b) \(G \) is connected, reduced, and solvable.

Let \(K \) be an algebraically closed field and \(G \) a linear algebraic group over \(K \). Say \(G \) has the smooth fixed point property if for all actions of \(G \) on a smooth scheme, the fixed point scheme is also smooth. Fogarty [1] has shown that if \(G \) is linearly reductive, then \(G \) has the smooth fixed point property. One can ask the converse question: If \(G \) is not linearly reductive, is there an action of \(G \) on a smooth scheme with a nonsmooth fixed point scheme? In this note we show how to construct such an action for any \(G \) that is a split extension by a unipotent subgroup. This gives an affirmative answer to the question for any class of groups where \(G \) being not linearly reductive implies \(G \) is a split extension by a unipotent subgroup. In particular this includes all groups of characteristic zero and in arbitrary characteristic connected reduced solvable groups.

Let \(G \) be a linear algebraic group over \(K \) which is a split extension by the unipotent subgroup \(U \). We first show that we may assume that \(U \) is the direct sum of copies of the additive group. If \(G \) modulo a normal subgroup has an action with a nonsmooth fixed point scheme, then certainly \(G \) does. Using this we can replace \(G \) by \(G \) modulo the commutator subgroup of \(U \), and hence we may assume \(G \) is commutative. In characteristic zero this already implies \(U \) is the direct sum of copies of the additive group. In characteristic \(p \) there are truncated Witt groups; however, if we take \(G \) modulo \(p \cdot U \) we may assume \(G \) is the direct sum of additive groups by a theorem of Serre [2].

We now construct an action of \(G \) on affine space with a nonreduced fixed point scheme. Using our assumption that \(G \) is a split extension, we
pick a section for the exact sequence

\[0 \rightarrow U \rightarrow G \rightarrow G/U \rightarrow 0. \]

Using this section we write elements of \(G \) as ordered pairs \((u, t)\) with \(u \in U \) and \(t \in G/U \). Let \(\rho: G/U \rightarrow \text{Aut}(U) \) give the action of \(G/U \) on \(U \).

The multiplication in \(G \) is given by

\[(u, t) \cdot (u', t') = (u + \rho(t) \cdot u', t \cdot t'). \]

Let \(X = U \times \text{spec } K[x] = \text{spec } K[y_1, \cdots, y_n, x] \). In terms of these coordinates on \(U \), let \(\rho(t) \) be given by the matrix \((\rho_{ij}(t))\). The action of \(G \) on \(X \) is given by

\[
(u, t): \begin{cases}
x \mapsto x, \\
y_i \mapsto \sum_j \rho_{ij}(t)y_j + u_ix^2, \quad i = 1, \cdots, n,
\end{cases}
\]

where \(u = (u_1, u_2, \cdots, u_n) \). We now verify that this is an action. Let \((u', t') = (u'_1, u'_2, \cdots, u'_n, t)\) be another element of \(G \). Now \(x \) is fixed so there is nothing to do with \(x \).

\[
(u, t): y_i \mapsto \sum_j \rho_{ij}(t)y_j + u_ix^2,
\]

\[
(u', t'): \sum \rho_{ij}(t)y_j + u_ix^2 \mapsto \sum \rho_{ij}(t) \left(\sum k \rho_{jk}(t')y_k + u'_{j}x^2 \right) + u_ix^2 \sum k \rho_{ik}(t \cdot t')y_k + \left(\sum j \rho_{ij}(t) \cdot u'_j + u_i \right) \cdot x^2.
\]

But this is also the result of \((u + \rho(t) \cdot u', t \cdot t') = (u, t) \cdot (u', t')\) acting on \((x, y_1, \cdots, y_n)\).

Now \(X \) is affine \(n + 1 \) space and hence smooth. On the other hand, the fixed point scheme of the action by \(G \) is defined by the ideal \(I \) generated by all the elements of the form \(gr - r \) for \(r \in K[y_1, \cdots, y_n, x] \) and \(g \in G \). By setting \(t \) to be the identity and \(u_1 = 1 \) we see that \(x^2 \in I \). But it is clear that \(x \not\in I \) and so the fixed point scheme is not reduced.

BIBLIOGRAPHY