Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A representation characterization theorem


Author: William D. L. Appling
Journal: Proc. Amer. Math. Soc. 50 (1975), 317-321
MSC: Primary 28A10
DOI: https://doi.org/10.1090/S0002-9939-1975-0369643-3
MathSciNet review: 0369643
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Given a field $ {\mathbf{F}}$ of subsets of a set $ U$ and a real-valued function $ T$ defined on a set $ S$ of functions from $ {\mathbf{F}}$ into $ \exp ({\mathbf{R}})$ with bounded range unions, a necessary and sufficient condition is given in order that there be a bounded finitely additive function $ \theta $ from $ {\mathbf{F}}$ into $ {\mathbf{R}}$ such that if $ \alpha $ is in $ S$, then the integral $ \int_U {\alpha (I)\theta (I)} $, as a variational integral, i.e., a refinement-wise limit of appropriate sums over (finite) subdivisions, exists and is $ T(\alpha )$.


References [Enhancements On Off] (What's this?)

  • [1] W. D. L. Appling, Interval functions and the Hellinger integral, Duke Math. J. 29 (1962), 515-520. MR 25 #4075. MR 0140659 (25:4075)
  • [2] W. D. L. Appling, Interval functions and continuity, Rend. Circ. Mat. Palermo (2) 11 (1962), 285-290. MR 29 #3600. MR 0166323 (29:3600)
  • [3] -, Summability of real-valued set functions, Riv. Mat. Univ. Parma (2) 8 (1967), 77-100. MR 40 #4418. MR 0251187 (40:4418)
  • [4] -, Set functions, finite additivity and distribution functions, Ann. Mat. Pura Appl. 96 (1973), 265-287. MR 0330390 (48:8727)
  • [5] A. Kolmogoroff, Untersuchungen über den Integralbegriff, Math. Ann. 103 (1930), 654-696. MR 1512641

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 28A10

Retrieve articles in all journals with MSC: 28A10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0369643-3
Keywords: Set function, variational integral, functional representation
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society