Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Local Euclidean four-point properties which characterize inner-product spaces


Authors: J. E. Valentine and S. G. Wayment
Journal: Proc. Amer. Math. Soc. 50 (1975), 337-343
MSC: Primary 52A50; Secondary 46C05
MathSciNet review: 0370375
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ M$ be a complete, convex, externally convex metric space. We show $ M$ is an inner-product space if and only if for each point $ t$ of $ M,M$ contains a sphere $ {S_t}$ which has the euclidean queasy, feeble or weak four-point property.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 52A50, 46C05

Retrieve articles in all journals with MSC: 52A50, 46C05


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1975-0370375-6
PII: S 0002-9939(1975)0370375-6
Keywords: Banach space, complete, convex, externally convex, inner-product space, local euclidean four-point properties, metric space
Article copyright: © Copyright 1975 American Mathematical Society