Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

$ \theta $-refinability and local properties


Authors: J. M. Atkins and R. F. Gittings
Journal: Proc. Amer. Math. Soc. 50 (1975), 405-411
MSC: Primary 54D20; Secondary 54E20
DOI: https://doi.org/10.1090/S0002-9939-1975-0375229-7
MathSciNet review: 0375229
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If $ Q$ is a property more general than metrizability, we prove several theorems of the general type: A locally $ Q$, $ \theta $-refinable space is a $ Q$-space.


References [Enhancements On Off] (What's this?)

  • [1] A. V. Arhangel'skiĭ, On a class of spaces containing all metric and all locally bi-compact spaces, Dokl. Akad. Nauk SSSR 151 (1963), 751-754 = Soviet Math. Dokl. 4 (1963), 1051-1055. MR 27 #2959. MR 0152988 (27:2959)
  • [2] J. Atkins, A characterization of $ \Sigma $ and $ {M^\ast }$-spaces, Notices Amer. Math. Soc. 18 (1971), 1111. Abstract #71T-G206.
  • [3] R. H. Bing, Metrization of topological spaces, Canad. J. Math. 3 (1951), 175-186. MR 13, 264. MR 0043449 (13:264f)
  • [4] Carlos J. R. Borges, On metrizability of topological spaces, Canad. J. Math. 20 (1968), 795-804. MR 37 #6910. MR 0231355 (37:6910)
  • [5] D. K. Burke, On subparacompact spaces, Proc. Amer. Math. Soc. 23 (1969), 655-663. MR 40 #3508. MR 0250269 (40:3508)
  • [6] -, On $ p$-spaces and $ w\Delta $-spaces, Pacific J. Math. 35 (1970), 285-296. MR 43 #3986. MR 0278255 (43:3986)
  • [7] -, A nondevelopable locally compact Hausdorff space with a $ G$-diagonal, General Topology and Appl. 2 (1972), 287-291. MR 47 #7702. MR 0319156 (47:7702)
  • [8] J. G. Ceder, Some generalizations of metric spaces, Pacific J. Math. 11 (1961), 105-125. MR 24 #A1707. MR 0131860 (24:A1707)
  • [9] G. D. Creede, Concerning semi-stratifiable spaces, Pacific J. Math. 32 (1970), 47-54. MR 40 #8006. MR 0254799 (40:8006)
  • [10] R. Gittings, Dissertation, University of Pittsburgh, Greensberg, Pa., 1973.
  • [11] R. W. Heath, Screenability, pointwise paracompactness, and metrization of Moore spaces, Canad. J. Math. 16 (1964), 763-770. MR 29 #4033. MR 0166760 (29:4033)
  • [12] R. Hodel, Moore spaces and $ w\Delta $-spaces, Pacific J. Math. 38 (1971), 641-652. MR 46 #6290. MR 0307169 (46:6290)
  • [13] T. Ishii, On closed mappings and $ M$-spaces. I, Proc. Japan Acad. 43 (1967), 752-756. MR 36 #5904. MR 0222854 (36:5904)
  • [14] E. Michael, On Nagami's $ \Sigma $-spaces and some related matters, Proc. Washington State Univ. Conf. on General Topology (Pullman, Wash., 1970), Pi Mu Epsilon, Dept. of Math., Washington State Univ., Pullman, Wash., 1970, pp. 13-19. MR 42 #1067. MR 0266159 (42:1067)
  • [15] K. Morita, A survey of the theory of $ M$-spaces, General Topology and Appl. 1 (1971), 49-55. MR 44 #3276. MR 0286060 (44:3276)
  • [16] K. Nagami, $ \Sigma $-spaces, Fund. Math. 65 (1969), 169-192. MR 41 #2612. MR 0257963 (41:2612)
  • [17] J. Nagata, Characterization of some generalized metric spaces, Notices Amer. Math. Soc. 18 (1971), 838. Abstract #71T-G151.
  • [18] A. Okuyama, $ \sigma $-spaces and closed mappings. I, II, Proc. Japan Acad. 44 (1968), 472-477; ibid. 44 (1968), 478-481. MR 37 #4791. MR 0229217 (37:4791)
  • [19] F. Siwiec and J. Nagata, A note on nets and metrization, Proc. Japan Acad. 44 (1968), 623-627. MR 39 #3450. MR 0242116 (39:3450)
  • [20] Ju. M. Smirnov, On the metrization of topological spaces, Uspehi Mat. Nauk 6 (1951), no. 6 (46), 100-111. (Russian) MR 14, 70. MR 0048788 (14:70a)
  • [21] J. M. Worrell, Jr. and H. H. Wicke, Characterizations of developable topological spaces, Canad. J. Math. 17 (1965), 820-830. MR 32 #427. MR 0182945 (32:427)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54D20, 54E20

Retrieve articles in all journals with MSC: 54D20, 54E20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0375229-7
Keywords: $ \theta $-refinable, $ \beta $-space, $ {\sigma ^\char93 }$-space, semistratifiable space, $ \sigma $-space, $ p$-space, quasi-complete space
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society