Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Hypocontinuity of multiplication on the Clifford algebra of an infinite-dimensional topological vector space


Author: Robert A. Haberstroh
Journal: Proc. Amer. Math. Soc. 50 (1975), 435-442
MSC: Primary 15A66; Secondary 46M99
DOI: https://doi.org/10.1090/S0002-9939-1975-0379547-8
MathSciNet review: 0379547
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Given a quadratic form on an infinite-dimensional vector space $ E$, useful results have been obtained by imposing on $ E$ the linear topology $ t(V)$ described by Fischer and Gross [4], [5], [6], and investigated by Gross and Miller [9]. It has been shown that, in the induced topology, the Clifford algebra $ C(E)$ is a topological algebra, but that, for topologies strictly finer than $ t(V)$, multiplication need not be continuous. The main result of the present paper asserts that, even for topologies finer than $ t(V)$, desirable conclusions can be drawn if continuity is replaced by hypocontinuity (see [2] for definition).


References [Enhancements On Off] (What's this?)

  • [1] N. Bourbaki, Eléments de mathématique. I: Les structures fondamentales de l'analyse. Fasc. VII, Livre II: Chap. 3: Algèbre multilinéaire, Actualités Sci. Indust., no. 1044, Hermann, Paris, 1948; 2nd ed., 1958. MR 10 #231; 30 #3104.
  • [2] -, Eléments de mathématique. XVIII. Part I. Les structures fondamentales de l'analyse. Livre V: Espaces vectoriels topologiques. Chaps. 3, 4, 5, Actualités Sci. Indust., no. 1229, Hermann, Paris, 1955. MR 17, 1109.
  • [3] -, Eléments de mathematique. XXIV. Part I. Les structures fondamentales de l'analyse. Livre II: Chap. 9: Formes sesquilinêaires et formes quadratiques, Actualités Sci. Indust., no. 1272, Hermann, Paris, 1959. MR 21 #6384.
  • [4] H. Fischer and H. Gross, Quadratic forms and linear topologies. I, Math. Ann. 157 (1964), 296-325. MR 30 #3149. MR 0172934 (30:3149)
  • [5] -, Quadratic forms and linear topologies. II: Non-real fields $ k$ and infinite-dimensional $ k$-vector spaces, Math. Ann. 159 (1965), 285-308. MR 32 # 142. MR 0182659 (32:142)
  • [6] -, Tensorprodukte linearer Topologien, Math. Ann. 160 (1965), 1-40. MR 32 #1538. MR 0184062 (32:1538)
  • [7] W. Greub, Multilinear algebra, Die Grundlehren der math. Wissenschaften, Band 136, Springer-Verlag, New York, 1967. MR 37 #222. MR 0224623 (37:222)
  • [8] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. No. 16 (1955). MR 17, 763. MR 0075539 (17:763c)
  • [9] H. Gross and V. Miller, Quadratic forms and linear topologies. IV: Continuous forms in infinite-dimensional spaces, Comment. Math. Helv. 42 (1967), 132-170. MR 35 #6709. MR 0215874 (35:6709)
  • [10] O. Hamara, Quadratic forms on linearly topologized vector spaces, Portugal. Math. 27 (1968), 15-30. MR 41 #8448. MR 0263849 (41:8448)
  • [11] H. Keller, Stetigkeitsfragen bei lineartopologischen Cliffordalgebren, Juris Verlag, Zurich, 1971. MR 0341097 (49:5847)
  • [12] G. Köthe, Topologische linear Räume. I, Die Grundlehren der math. Wissenschaften, Band 107, Springer-Verlag, Berlin 1960; English transl., Topological vector spaces, Die Grundlehren der math. Wissenschaften, Band 159, Springer-Verlag, New York, 1969. MR 40 #1750.
  • [13] A. Robertson and W. Robertson, Topological vector spaces, Cambridge Tracts in Math. and Math. Phys., no. 53, Cambridge University Press, New York, 1964. MR 28 #5318. MR 0162118 (28:5318)
  • [14] H. Schaefer, Topological vector spaces, Macmillan, New York, 1966. MR 33 #1689. MR 0193469 (33:1689)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 15A66, 46M99

Retrieve articles in all journals with MSC: 15A66, 46M99


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0379547-8
Keywords: Clifford algebra, linear topologies, hypocontinuity
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society