Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Some fixed point theorems for condensing multifunctions in locally convex spaces


Authors: C. H. Su and V. M. Sehgal
Journal: Proc. Amer. Math. Soc. 50 (1975), 150-154
MSC: Primary 47H10
DOI: https://doi.org/10.1090/S0002-9939-1975-0380530-7
MathSciNet review: 0380530
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G$ be a nonempty subset of a locally convex space $ E$ such that $ \operatorname{cl} (G)$ is convex and quasi-complete, and $ f:\operatorname{cl} (G) \to E$ a continuous condensing multifunction. In this paper, several fixed point theorems are established if $ f$ satisfies some conditions on the boundary of $ G$. The results herein extend some theorems of Reich [9] and generalize some of the well-known fixed point theorems.


References [Enhancements On Off] (What's this?)

  • [1] C. Berge, Topological spaces, Macmillan, New York, 1963.
  • [2] F. F. Bonsall, Lectures on some fixed point theorems of functional analysis, Tata Institute of Fundamental Research, Bombay, 1962. MR 33 # 6332. MR 0198173 (33:6332)
  • [3] F. E. Browder, The fixed point theory of multi-valued mappings in topological vector spaces, Math. Ann. 177 (1968), 283-301. MR 37 # 4679. MR 0229101 (37:4679)
  • [4] K. Fan, Fixed-point and minimax theorems in locally convex topological linear spaces, Proc. Nat. Acad. Sci. U. S. A. 38 (1952), 121-126. MR 13, 858. MR 0047317 (13:858d)
  • [5] I. L. Glicksberg, A further generalization of Kakutani fixed point theorem, with application to Nash equilibrium points, Proc. Amer. Math. Soc. 3 (1952), 170-174. MR 13, 764. MR 0046638 (13:764g)
  • [6] C. J. Himmelberg, J. R. Porter and F. S. Van Vleck, Fixed point theorems for condensing multifunctions, Proc. Amer. Math. Soc. 23 (1969), 635-641. MR 39 # 7480. MR 0246175 (39:7480)
  • [7] C. J. Himmelberg, Fixed points of compact multifunctions, J. Math. Anal. Appl. 38 (1972), 205-207. MR 46 # 2505. MR 0303368 (46:2505)
  • [8] A. J. B. Porter, An elementary version of the Leray-Schauder theorem, J. London Math. Soc. (2) 5 (1972), 414-416. MR 0312342 (47:904)
  • [9] S. Reich, Fixed points in locally convex spaces, Math. Z. 125 (1972), 17-31. MR 46 # 6110. MR 0306989 (46:6110)
  • [10] A. Tychonoff, Ein Fixpunktsatz, Math. Ann. 111 (1935), 767-776. MR 1513031

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47H10

Retrieve articles in all journals with MSC: 47H10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0380530-7
Keywords: Multifunction, condensing, fixed point, quasi-complete
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society