Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Homogeneous spaces with vanishing Steenrod squaring operations


Author: Victor Schneider
Journal: Proc. Amer. Math. Soc. 50 (1975), 451-458
MSC: Primary 57E25; Secondary 57F15
DOI: https://doi.org/10.1090/S0002-9939-1975-0405470-6
MathSciNet review: 0405470
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If $ G$ is a compact, connected Lie group, $ H$ is a closed subgroup of $ G$ and $ G/H$ has no nonzero Steenrod operations, then $ G/H$ splits as a product of homogeneous spaces of simple Lie groups (the factors of $ G$). This fact is used to classify transitive actions on spaces with vanishing Steenrod operations, namely product of certain Stiefel manifolds and spheres.


References [Enhancements On Off] (What's this?)

  • [1] A. Borel, Le plan projectif des octaves el les sphères comme espaces homogènes, C. R. Acad. Sci. Paris 230 (1950), 1378-1380. MR 11, 640. MR 0034768 (11:640c)
  • [2] -, Sur l'homologie et la cohomologie des groupes de Lie compacts connexes, Amer. J. Math. 76 (1954), 273-342. MR 16, 219. MR 0064056 (16:219b)
  • [3] W. -Y. Hsiang and J. C. Su, On the classification of transitive effective actions on Steifel manifolds, Trans. Amer. Math. Soc. 130 (1968), 322-336. MR 36 #4581. MR 0221529 (36:4581)
  • [4] D. Montgomery and H. Samelson, Transformation groups of spheres, Ann. of Math. (2) 44 (1943), 454-470. MR 5, 60. MR 0008817 (5:60b)
  • [5] J. Poncet, Groups de Lie compacts de transformations de l'espace euclidien et les sphères comme espaces homogènes, Comment. Math. Helv. 33 (1959), 109-120. MR 21 #2708. MR 0103946 (21:2708)
  • [6] H. Scheerer, Homotopieäquivalente kompakte Liesche Gruppen, Topology 7 (1968), 227-232. MR 37 #4833. MR 0229259 (37:4833)
  • [7] Victor Schneider, Transitive actions on highly connected spaces, Proc. Amer. Math. Soc. 38 (1973), 179-185. MR 47 #9658. MR 0321125 (47:9658)
  • [8] Emery Thomas, Exceptional Lie groups and Steenrod squares, Michigan Math. J. 11 (1964), 151-156. MR 29 #610. MR 0163307 (29:610)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57E25, 57F15

Retrieve articles in all journals with MSC: 57E25, 57F15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0405470-6
Keywords: Homogeneous space, Steenrod operations, spectral sequence
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society