Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Defining normal subgroups of unipotent algebraic groups


Author: A. Fauntleroy
Journal: Proc. Amer. Math. Soc. 50 (1975), 14-19
MSC: Primary 20G15
DOI: https://doi.org/10.1090/S0002-9939-1975-0409674-8
MathSciNet review: 0409674
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G$ be a connected unipotent algebraic group defined over the perfect field $ k$. We show that polynomial generators $ {x_1}, \cdots ,{x_n}$ for the ring $ k[G]$ can be chosen so that if $ N$ is any connected normal $ k$-closed subgroup of $ G$, then $ I(N)$ can be generated by $ \operatorname{co} \dim N$ $ p$-polynomials in $ {x_1}, \cdots ,{x_n}$ where $ p = \operatorname{char} k$. Moreover $ k[G/N]$ can also be generated as a polynomial algebra over $ k$ by $ p$-polynomials.


References [Enhancements On Off] (What's this?)

  • [1] A. Borel, Linear algebraic groups, Benjamin, New York, 1969. MR 40 #4273. MR 0251042 (40:4273)
  • [2] G. Hochschild and G. D. Mostow, Automorphisms of affine algebraic groups, J. Algebra 13 (1969), 535-543. MR 41 #315. MR 0255655 (41:315)
  • [3] M. Rosenlicht, Extensions of vector groups by abelian varieties, Amer. J. Math. 80 (1958), 685-714. MR 20 #5780. MR 0099340 (20:5780)
  • [4] -, Questions of rationality for solvable algebraic groups over nonperfect fields, Ann. Mat. Pura Appl. (4) 61 (1963), 97-120. MR 28 #2113. MR 0158891 (28:2113)
  • [5] -, Nilpotent linear algebraic groups, Sem. Alg. Geom. Topol. (1962/63), vol. 1, Ist. Naz. Alta Mat., Ediz. Cremonese, Rome, 1965, pp. 133-152. MR 32 #5740. MR 0188301 (32:5740)
  • [6] J. B. Sullivan, Automorphisms of affine unipotent groups in positive characteristics, J. Algebra 26 (1973). MR 0364335 (51:590)
  • [7] J. Tits, Lectures on algebraic groups, Lecture Notes, Yale University, New Haven, Conn., 1967.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20G15

Retrieve articles in all journals with MSC: 20G15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0409674-8
Keywords: Unipotent group, $ p$-polynomial, Frattini coordinates
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society