ABSTRACT. E. F. Steiner introduced a quasi-proximity δ satisfying $A \delta B$ iff $\{x\} \delta B$ for some x of A. The purpose of this paper is to describe the Tychonoff product of topologies in terms of Steiner's quasi-proximities. Whenever (X_a, δ_a) is the Steiner quasi-proximity space, the product proximity on $X = \prod_{a} X_a$ can be given, by using the concept of finite coverings, as the smallest proximity on X which makes each projection δ-continuous.

Introduction. E. F. Steiner [2] introduced a quasi-proximity δ satisfying $A \delta B$ iff $\{a\} \delta B$ for some a of A. This note is devoted to the study of a product proximity on $X = \prod_{a} X_a$, where each (X_a, δ_a) is the above Steiner quasi-proximity space. As F. W. Stevenson [3] pointed out, there are three equivalent definitions of a product proximity. Especially, Császár and Leader defined a product proximity by using finite coverings [3]. Unfortunately, for Steiner's quasi-proximity, it seems difficult to us to define the product proximity in the same way as Császár and Leader. We must modify the definition of a product proximity in our case (Definition 2). We then show that the Tychonoff product topology can be induced on the cartesian product $X = \prod_{a} X_a$ in terms of the quasi-proximity mentioned above.

The reader is referred to S. A. Naimpally and B. D. Warrack [1] for definitions not given here.

Preliminary definitions and lemmas.

Definition 1. A binary relation δ defined on the power set of X is called a Steiner's or S-quasi-proximity on X iff δ satisfies the axioms below.

(I) For every $A \subset X$, $A \overline{\delta} \phi$ ($\overline{\delta}$ means "not-δ").

(II) $A \delta B$ iff $\{a\} \delta B$ for some $a \in A$.

(III) $A \delta (B \cup C)$ iff $A \delta B$ or $A \delta C$.

(IV) For every $x \in X$, $\{x\} \delta \{x\}$.

(V) $A \overline{\delta} B$ implies that there exists a subset C such that $A \overline{\delta} C$ and $(X - C) \overline{\delta} B$.
Remark 1. Clearly Axiom (II) is equivalent to Axiom (II') below.

(II') For an arbitrary index set Λ,

$$\left(\bigcup_{\lambda \in \Lambda} A_{\lambda} \right) \delta B \iff A_{\mu} \delta B \text{ for some } \mu \in \Lambda.$$

Furthermore, in the S-quasi-proximity we can replace Axiom (V) with Axiom (V') below.

(V') If $x \ll A$, then there exists a set B such that $x \ll B \ll A$. (In general, $P \ll Q$ means $P \overline{\delta} (X - Q)$ and Q is said to be a δ-neighborhood of P.)

In fact, it is easily seen that Axiom (V) implies Axiom (V'). Conversely we show that Axiom (V) follows from Axioms (I)–(IV) and (V'). Suppose $A \overline{\delta} B$. By Axiom (II), $\{x\} \overline{\delta} B$, i.e. $x \ll X - B$ for each $x \in A$. Then it follows from Axiom (V') that there is a set C_x such that $x \ll C_x \ll X - B$ for each $x \in A$. Since $\{x\} \overline{\delta} (X - C_x)$ for each $x \in A$,

$$\{x\} \overline{\delta} \left(X - \bigcup_{x \in A} C_x \right)$$

by Axiom (III).

Setting $\bigcup_{x \in A} C_x = C$, we obtain $A \overline{\delta} (X - C)$ by Axiom (II). On the other hand, since $C_x \overline{\delta} B$ for each $x \in A$, we have $C \overline{\delta} B$ by Axiom (II'). Thus Axiom (V) surely holds.

Let (X, δ) be an S-quasi-proximity space. For every $A \subseteq X$, we set $c(A) = \{x : \{x\} \delta A\}$. Then the operator c is a topological closure operator and so X is a topological space [2]. This topological space is denoted by (X, c) and the topology induced by δ is denoted by $\tau(\delta)$. If, on a set X, there is a topology τ and a proximity δ such that $\tau = \tau(\delta)$, then τ and δ are said to be compatible.

The proof of the following is trivial.

Lemma 1. (1) If $A \delta B$ and $B \subseteq C$, then $A \delta C$.
(2) If $A \delta B$ and $A \subseteq C$, then $C \delta B$.
(3) If $A \overline{\delta} B$, then $A \cap B = \emptyset$.

Lemma 2. For subsets A and B of an S-quasi-proximity space (X, c),

$$A \delta B \iff A \cap c(B) \neq \emptyset \iff A \delta c(B).$$

Proof. This follows readily from Axiom (II).

The following is a direct result of Lemma 2.

Lemma 3. Every topological space (X, τ) with the topology τ has a
compatible S-quasi-proximity δ defined by

$$A \delta B \iff A \cap \overline{B} \neq \emptyset,$$

where \overline{B} denotes the τ-closure of B.

The following lemma shows that in S-quasi-proximity spaces a δ-continuous mapping and a continuous mapping are equivalent.

Lemma 4. Let f be a mapping of an S-quasi-proximity space (X, δ_1) into an S-quasi-proximity space (Y, δ_2). Then f is δ-continuous if and only if it is a continuous mapping of the topological space $(X, \tau(\delta_1))$ into the topological space $(Y, \tau(\delta_2))$.

Proof. Suppose that f is δ-continuous and that x is any point of $c_1(A)$. Then $\{x\} \delta_1 A$, which implies $f(\{x\}) \delta_2 f(A)$. It follows that $f(\{x\}) \in c_2\{f(A)\}$ and so $f(c_1(A)) \subseteq c_2\{f(A)\}$. ($c_1$ and c_2 denote the closure operators in (X, δ_1) and (Y, δ_2) respectively.) Conversely let f be continuous and let $A \delta_1 B$. Since, by Lemma 2 $A \cap c_1(B) \neq \emptyset$, it follows that $f(A) \cap c_2\{f(B)\} \neq \emptyset$. From the continuity of f, we obtain that $f(A) \cap c_2\{f(B)\} \neq \emptyset$. This implies $f(A) \delta_2 f(B)$, so that f is δ-continuous. Q. E. D.

Proximity products. In the present section we attempt to obtain a direct construction of an S-quasi-proximity product space by a proximal approach. As we stated in the introduction, we modify the definition of Császár and Leader for the product proximity.

Definition 2. Let \{$(X_a, \delta_a) : a \in \Lambda$\} be an arbitrary family of S-quasi-proximity spaces. Let $X = \prod_{a \in \Lambda} X_a$ denote the cartesian product of these spaces. A binary relation δ on the power set of X is defined as follows:

Let A and B be subsets of X. Define $A \delta B$ iff there is a point $x_0 \in A$ such that, for any finite covering \{$B_i : i = 1, 2, \ldots, n$\} of B, there exists a set B_i satisfying $P_a[x_0] \delta_a P_a[B_i]$ for each $a \in \Lambda$, where each P_a denotes the projection from X to X_a.

Remark 2. Leader [3] defined a product proximity as follows: For A, $B \subseteq X$, $A \delta B$ iff for any finite coverings \{$A_i : i = 1, 2, \ldots, m$\} and \{$B_j : j = 1, 2, \ldots, n$\} of A and B respectively, there is an A_i and a B_j such that $P_a[A_i] \delta_a P_a[B_j]$ for each $a \in \Lambda$. But in order to prove that δ satisfies Axiom (II), it seems difficult to use Leader's definition for the S-quasi-proximity.

Lemma 5. Let each (X_a, δ_a) be an S-quasi-proximity space and let A
and B be subsets of $X = \prod X_a$. Then $A \triangleleft B$ implies $P_a[A] \delta_a P_a[B]$ for each $a \in \Lambda$.

Proof. Suppose $A \triangleleft B$. Since $\{B\}$ itself is a finite covering of B, there is a point x_0 of A such that $P_a[x_0] \delta_a P_a[B]$ for each $a \in \Lambda$. Applying Axiom (II) to each δ_a, we have $P_a[A] \delta_a P_a[B]$ for each $a \in \Lambda$. Q. E. D.

It follows from Lemma 5 that each projection P_a is δ-continuous and hence it is also continuous by Lemma 4 if X becomes an S-quasi-proximity space. Now we prove the main theorem.

Theorem 1. The binary relation δ given by Definition 2 is an S-quasi-proximity on the cartesian product X. This space (X, δ) is said to be an S-quasi-proximity product space.

Proof. It suffices to show that δ satisfies Axioms (I)–(IV) of Definition 1 and Axiom (V) of Remark 1. It is easy to see that δ satisfies Axiom (I).

Axiom (II): Suppose $A \triangleleft B$. If $x_0 \in A$ fulfils the condition in Definition 2, then clearly $x_0 \triangleleft B$.

Conversely suppose that $\{x_0\} \triangleleft B$ for some x_0 of A. If $\{B_i: i = 1, 2, \ldots, n\}$ is any finite covering of B, then there is a set B_i such that $P_a[x_0] \delta_a P_a[B_i]$ for each $a \in \Lambda$. By Definition 2, this means $A \triangleleft B$.

Axiom (III): Suppose $A \triangleleft B$ and let $x_0 \in A$ satisfy the condition in Definition 2. If $\{D_i: i = 1, 2, \ldots, n\}$ is any finite covering of $B \cup C$, then it is a covering of B as well; hence there is an i such that $P_a[x_0] \delta_a P_a[D_i]$ for each $a \in \Lambda$. Thus $A \triangleleft (B \cup C)$.

Conversely suppose $A \triangledown B$ and $A \triangledown C$. Then for any given $x \in A$, there are finite coverings $\{D_i: i = 1, 2, \ldots, n\}$ and $\{D_j: j = n + 1, \ldots, n + p\}$ of B and C respectively such that

$$P_a[x] \triangledown_a P_a[D_i] \text{ for } a = t \in \Lambda,$$

$$P_a[x] \triangledown_a P_a[D_j] \text{ for } a = s \in \Lambda,$$

where $i = 1, 2, \ldots, n$ and $j = n + 1, \ldots, n + p$. Since $\{D_k: k = 1, 2, \ldots, n + p\}$ is a covering of $B \cup C$, we conclude that $A \triangledown (B \cup C)$.

Axiom (IV): Let x be a point of X and let A be any set such that $x \in A$. Since $P_a[x] \in P_a[A]$ for each $a \in \Lambda$, by Lemma 1(3) we have $P_a[x] \delta_a P_a[A]$ for each $a \in \Lambda$. Thus $\{x\} \delta \{x\}$.

Axiom (V): Let $\{x\}$ and A be subsets of X such that $x \ll A$, that is, $\{x\} \triangledown (X - A)$. Then there is a finite covering $\{A_i: i = 1, 2, \ldots, n\}$ of $(X - A)$ such that $P_a[x] \triangledown_a P_a[A_i]$ for some $a_i \in \Lambda$, where $i = 1, 2, \ldots, n$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Equivalently \(P_a[x] \ll X_a - P_a[A_i] \). Since each \(\delta_a \) satisfies Axiom (V'), there exist \(G_i \) \((i = 1, 2, \ldots, n)\) such that

\[
(1) \quad P_a[x] \ll G_i \ll X_a - P_a[A_i] \quad \text{for } a = t_i \in \Lambda.
\]

From the first half of (1), we have

\[
(2) \quad P_a[x] \overline{\delta}_a (X_a - G_i).
\]

Now we set

\[
K_i = P_a^{-1}[X_a - G_i] = X - P_a^{-1}[G_i]
\]

and set \(K = \bigcup_{i=1}^n K_i \). It follows from (2) that

\[
P_a[x] \overline{\delta}_a P_a[K_i] \quad \text{for } a = t_i \in \Lambda, \quad i = 1, 2, \ldots, n.
\]

Since \(\{K_i: i = 1, 2, \ldots, n\} \) is a finite covering of \(K \), we obtain \(\{x\} \overline{\delta} K \). This implies

\[
(3) \quad x \ll X - K.
\]

Next, from the second half of (1), we have

\[
(4) \quad G_i \overline{\delta}_a P_a[A_i] \quad \text{for some } a = t_i, \quad i = 1, 2, \ldots, n.
\]

On the other hand, since

\[
X - K = \bigcap_{j=1}^n P_a^{-1}[G_j] \quad (a = t_i),
\]

it follows that

\[
P_a[X - K] = P_a \left\{ \bigcap_{j=1}^n P_a^{-1}[G_j] \right\} \subseteq G_i \quad \text{for } a = t_i.
\]

Hence for every point \(y \) of \(X - K \),

\[
P_a[y] \in G_i \quad (a = t_i; \quad i = 1, 2, \ldots, n).
\]

By (4) and Lemma 1(2), we have therefore \(P_a[y] \overline{\delta}_a P_a[A_i] \) for every \(y \) of \(X - K \), where \(a = t_i; \quad i = 1, 2, \ldots, n \). Because \(\{A_i: i = 1, 2, \ldots, n\} \) is a finite covering of \((X - A) \), we get that

\[
(5) \quad (X - K) \overline{\delta} (X - A), \quad \text{that is, } \quad X - K \ll A.
\]

Relations (3) and (5) together show that \(\overline{\delta} \) satisfies Axiom (V'). This completes the proof.
In view of Lemma 4, the following theorem shows that the Tychonoff product topology can be induced on an S-quasi-proximity product space \((X, \pi(\delta))\).

Theorem 2. The S-quasi-proximity \(\delta\) on \(X\) given by Definition 2 is the smallest S-quasi-proximity for which each projection \(P_a\) is \(\delta\)-continuous.

Proof. Let \(\beta\) be an arbitrary S-quasi-proximity on \(X\) such that each projection \(P_a\) is a \(\delta\)-continuous mapping of \((X, \beta)\) into \((X_a, \delta_a)\). Then we must show that \(A \beta B\) implies \(A \delta B\) for \(A, B \subset X\). By Axiom (II), there is a point \(x_0\) of \(A\) such that \(\{x_0\} \beta B\). Given any finite covering \(\{B_i: i = 1, 2, \ldots, n\}\) of \(B\), we can choose a set \(B_i\) such that \(\{x_0\} \beta B_i\) by Axiom (III). Since each \(P_a\) is \(\delta\)-continuous, \(P_a[x_0] \delta_a P_a[B_i]\) for each \(a \in \Lambda\). Because of Definition 2, we can conclude \(A \delta B\). Q. E. D.

Finally, the author would like to thank the referee who indicated the revision of Definition 2 and the proof of Theorem 1.

REFERENCES

