Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Convex combinations of uniformly mean stable Markov operators


Author: Robert Sine
Journal: Proc. Amer. Math. Soc. 51 (1975), 123-126
MSC: Primary 47A35; Secondary 60J05
DOI: https://doi.org/10.1090/S0002-9939-1975-0374943-7
MathSciNet review: 0374943
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A convex combination of commuting uniformly mean stable Markov operators acting on $ C(X)$ is shown to be uniformly mean stable. The proof is completely geometric.


References [Enhancements On Off] (What's this?)

  • [1] B. Jamison, Ergodic decompositions induced by certain Markov operators, Trans. Amer. Math. Soc. 117 (1965), 451-468. MR 34 #6857. MR 0207041 (34:6857)
  • [2] S. P. Llyod, On certain projections in spaces of continuous functions, Pacific J. Math. 13 (1963), 171-175. MR 27 #2845. MR 0152873 (27:2845)
  • [3] J. C. Oxtoby, Ergodic sets, Bull. Amer. Math. Soc. 58 (1952), 116-136. MR 13, 850. MR 0047262 (13:850e)
  • [4] M. Rosenblatt, Equicontinuous Markov operators, Teor. Verojatnost. i Primenen. 9 (1964), 205-222. MR 30 #1549. MR 0171318 (30:1549)
  • [5] R. Sine, Geometric theory of a single Markov operator, Pacific J. Math. 27 (1968), 155-166. MR 39 #1630. MR 0240281 (39:1630)
  • [6] -, A mean ergodic theorem, Proc. Amer. Math. Soc. 24 (1970), 438-439. MR 40 #5825. MR 0252605 (40:5825)
  • [7] M. Falkowitz, On finite invariant measures for Markov operators, Proc. Amer. Math. Soc. 38 (1973), 553-557. MR 47 #880. MR 0312318 (47:880)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47A35, 60J05

Retrieve articles in all journals with MSC: 47A35, 60J05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0374943-7
Keywords: Uniformly mean stable, Markov operators, convex combinations
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society