HOMOMORPHIC IMAGES OF σ-COMPLETE BOOLEAN ALGEBRAS

SABINE KOPPELBERG

ABSTRACT. It is a well-known theorem of R. S. Pierce that, for every infinite cardinal α, $\aleph_0^\alpha = \alpha$ if and only if there is a complete Boolean algebra B s.t. $\text{card } B = \alpha$ (see [3, Theorem 25.4]). Recently, Comfort and Hager proved [1] that, for every infinite σ-complete Boolean algebra B, $(\text{card } B)^{\aleph_0} = \text{card } B$. We extend this result to the class of homomorphic images of σ-complete algebras, following closely Comfort's and Hager's proof. As a corollary, an improvement of Shelah's theorem on the cardinality of ultraproducts of finite sets [2] is derived (Theorem 2).

We denote the finite operations on a Boolean algebra A by $+$, \cdot, and $-$, the infinite operations by Σ and Π. If $a \in A$ and $a > 0$, $A\setminus a$ is the algebra $\{x \in A | x < a\}$. We write $\text{card } a$ for $\text{card } A\setminus a$ (if $a = 0$, $\text{card } a = 1$). A sequence $(a_n | n \in \omega)$ in A is disjointed if $a_n \neq 0$ and $a_n \cdot a_m = 0$ for $n, m \in \omega, n \neq m$. For every sequence $(A_n | n \in \omega)$ of Boolean algebras, $\Pi_{n \in \omega} A_n$ is the product algebra.

Theorem 1. Let B be a σ-complete Boolean algebra, p an epimorphism from B onto A and $\alpha = \text{card } A \geq \aleph_0$. Then $\aleph_0^{\aleph_0} = \alpha$.

Proof. We first prove three lemmas.

(a) Suppose $x, y \in B$ s.t. $x \leq y$, put $a = p(x)$ and $b = p(y)$. If $c \in A$ s.t. $a \leq c \leq b$, there is some $z \in B$ s.t. $x \leq z \leq y$ and $p(z) = c$. If $d \in A$ s.t. $a \cdot d = 0$, there is some $t \in B$ s.t. $x \cdot t = 0$ and $p(t) = d$.

Proof. Choose $z', t' \in B$ s.t. $p(z') = c$, $p(t') = d$; put $z = z' \cdot y + x$, $t = t' \cdot -x$.

(b) Suppose I is an ideal of A s.t. $\text{card } I = \text{card } A \geq \aleph_0$; every countable subset of I has an upper bound in I and for every $a \in I$, $\text{card } a^{\aleph_0}$ equals 2^{\aleph_0} or $\text{card } a$. Then $\aleph_0^{\aleph_0} = \alpha$.

Received by the editors May 7, 1974.

AMS (MOS) subject classifications (1970). Primary 02H13, 06A40.

1 This answers a question of M. Ziegler whether Theorem 1 allows to generalize Shelah's result to arbitrary reduced products of finite sets; the author's original proof only established Shelah's theorem.
Proof.

$$\alpha^{\aleph_0} = \text{card } \{ f : \aleph_0 \to I \} = \text{card } \{ f \text{ for some } a \in I, f : \aleph_0 \to A|a\}$$

$$\leq \text{card } I \cdot \max(2^{\aleph_0}, \sup_{a \in I} \text{card } a) \leq \alpha \cdot \max(2^{\aleph_0}, \alpha) = \alpha.$$

(c) Suppose $\langle a_n | n \in \omega \rangle$ is a disjointed sequence in A. Then $\text{card } \Pi_{n \in \omega} (A|a_n) \leq \alpha$.

Proof: We shall construct a one-one mapping ϕ from $P = \Pi_{n \in \omega} (A|a_n)$ to A. Let f be a function (not necessarily a homomorphism) from A to B s.t. $p \circ f = \text{id}_A$. By (a) there is a disjointed sequence $\langle b_n | n \in \omega \rangle$ in B s.t. $p(b_n) = a$ for $n \in \omega$. Define, for $\langle x_n | n \in \omega \rangle \in P$,

$$\phi(\langle x_n | n \in \omega \rangle) = p \left(\sum_{n \in \omega} (f(x_n) \cdot b_n) \right).$$

Since $\phi(\langle x_n | n \in \omega \rangle) \cdot a_m = x_m$ for every $m \in \omega$, ϕ is one-one.

Returning to the proof of the theorem, suppose $\alpha < \alpha^{\aleph_0}$ and that α is the least cardinal providing a counterexample. By (c), $2^{\aleph_0} \leq \alpha$. Let $I = \{ a \in A | \text{card } a < \alpha \}$. I is a proper ideal of A. If $a \in I$ and $0 < a$, $A|a$ is a homomorphic image of A, hence of B and thus, by minimality of α, $(\text{card } a)^{\aleph_0}$ equals 2^{\aleph_0} or card a.

The algebra $C = A/I$ is finite, for otherwise, by (a), there would exist a disjointed sequence $\langle a_n | n \in \omega \rangle$ in $A\setminus I$, and by (c), $\alpha^{\aleph_0} \leq \alpha$. Thus card $I = \alpha$. If every countable subset of I has an upper bound in I, we have reached a contradiction. Thus, assume the contrary.

There is some $k \in \omega \setminus \{ 0 \}$ s.t. card $C = 2^k$ and some disjointed sequence $\langle a_j | j < k \rangle$ in $A\setminus I$. We may assume that $\Sigma_{j < k} a_j = 1$. There is some $j < k$ s.t. not every countable subset of $I \cap A|a_j$ has an upper bound in $I \cap A|a_j$. Put $A' = A|a_j$ and $I' = I \cap A'$. Then A' is a homomorphic image of A and hence of B, card $A' = \alpha$, I' is a prime ideal in A', card $I' = \alpha$, and for every $a \in I'$ s.t. $0 < a$, (card $A'|a$)$^{\aleph_0}$ equals 2^{\aleph_0} or card $A'|a$. We may and do assume that $A = A'$ and $I = I'$, i.e. that I is a prime ideal of A. By the above assumption, there is a disjointed sequence $\langle c_n | n \in \omega \rangle$ in I s.t. $\{ c_n | n \in \omega \}$ has no upper bound in I. Therefore, the ideal $K = \{ k \in A | k \cdot c_n = 0 \text{ for every } n \in \omega \}$ is a subset of I. By (c), card $\Pi_{n \in \omega} (A|c_n) \leq \alpha$. We actually have card $\Pi_{n \in \omega} (A|c_n) < \alpha$, for otherwise,

$$\alpha^{\aleph_0} = \left(\text{card } \Pi_{n \in \omega} (A|c_n) \right)^{\aleph_0} = \Pi_{n \in \omega} (\text{card } A|c_n)^{\aleph_0} = \Pi_{n \in \omega} (\text{card } A|c_n) = \alpha.$$
The range of the homomorphism \(f: A \rightarrow \prod_{n \in \omega} (A|c_n) \), defined by \(f(a) = (a \cdot c_n | n \in \omega) \) for \(a \in A \), thus has cardinality less than \(\alpha \), and its kernel \(K \) has cardinality \(\alpha \). We shall show that every countable subset of \(K \) has an upper bound in \(K \), which contradicts (b). Suppose \(\langle k_n | n \in \omega \rangle \) is a sequence in \(K \). Define, by (a), inductively \(\kappa_n \) and \(\delta_n \) in \(B \) s.t.

\[
p(\kappa_0) = k_0,
\]

\[
p(\delta_0) = -c_0, \quad \kappa_0 \leq \delta_0,
\]

\[
p(\kappa_{n+1}) = k_0 + \cdots + k_{n+1}, \quad \kappa_n \leq \kappa_{n+1} \leq \delta_n,
\]

\[
p(\delta_{n+1}) = -(c_0 + \cdots + c_{n+1}), \quad \kappa_{n+1} \leq \delta_{n+1} \leq \delta_n.
\]

Then \(d = p(\prod_{n \in \omega} \delta_n) \) is an upper bound of \(\{k_n | n \in \omega\} \) in \(K \).

Corollary. Suppose \(A \) is an infinite homomorphic image of some complete Boolean algebra. Then \((\operatorname{card} A)^{\aleph_0} = \operatorname{card} A \).

Remark. Suppose \(A \) is a Boolean algebra satisfying

(1) if \(M, N \subseteq A \) are countable and \(m \cdot n = 0 \) for every \(m \in M, n \in N \),

then there exists \(a \in A \) s.t. \(m \leq a, a \cdot n = 0 \) for every \(m \in M, n \in N \).

Then \((\operatorname{card} A)^{\aleph_0} = \operatorname{card} A \), provided \(\operatorname{card} A \geq \aleph_0 \). In fact, property (1) is all that is needed in the proof of Theorem 1. And it is clear that homomorphic images of \(\sigma \)-complete Boolean algebras and \(\aleph_1 \)-saturated Boolean algebras satisfy (1). This shows a close connection between Shelah’s method and ours.

We shall use two trivial facts about reduced products. Let \(I \) be a nonvoid set and \(F \) a filter on \(I \).

Lemma 1. Let \(X_i \) be an arbitrary nonvoid set for every \(i \in I \). Put \(J = \{i \in I | \operatorname{card} X_i = 1\}, K = I \setminus J \). If \(J \in F \), card \(\prod_{i \in J} X_i / F = 1 \). If \(J \notin F \), \(G = \{M \cap K | M \in F\} \) is a filter on \(K \) and there is a canonical isomorphism from \(\prod_{i \in K} X_i / F \) onto \(\prod_{i \in K} X_i / G \).

Lemma 2. Let \(X_i, Z_i \) be arbitrary sets for every \(i \in I \). Then there is a canonical isomorphism from \(\prod_{i \in I} (X_i \times Z_i) / F \) onto \(\prod_{i \in I} X_i / F \times \prod_{i \in I} Z_i / F \).

Theorem 2. Suppose \(I \neq \emptyset \), \(F \) is a filter on \(I \), \(n_i \in \omega \) for \(i \in I \), and \(\alpha = \operatorname{card} \prod_{i \in I} n_i / F \geq \aleph_0 \). Then \(\alpha^{\aleph_0} = \alpha \).

Proof. For every \(x = \langle x_i | i \in I \rangle \in \omega^I \), put \(c(x) = \operatorname{card} \prod_{i \in I} x_i / F \). We
first show:

(*) Suppose $x, y \in \omega^I$, $2 \leq x_i \leq y_i \leq 2x_i$ for every $i \in I$ and $c(x) \geq \aleph_0$. Then $c(y) = c(x)$.

We clearly may assume $y_i = 2x_i$ for every $i \in I$. But then we have, by Lemma 2, $c(y) = card 2^I/F \cdot c(x) = c(x)$.

To prove the theorem, let $n = (n_i | i \in I) \in \omega^I$ be given s.t. $c(n) \geq \aleph_0$. By Lemma 1, we may assume $2 \leq n_i$ for every $i \in I$. Define, for $i \in I$,

$$y_i = 2^{k_i + 1},$$

where $k_i \in \omega$ and $2^{k_i} \leq n_i < 2^{k_i + 1}$.

Since $n_i < 2^{k_i}$, we have, by (*), $\alpha = c(n) = c(y)$. Every y_i may be considered as a finite (and hence, complete) Boolean algebra. Thus $\Pi_{i \in I} y_i$ carries, in a canonical way, the structure of a complete Boolean algebra and $A = \Pi_{i \in I} y_i / F$ the structure of a homomorphic image of a complete Boolean algebra. By the Corollary, $\alpha = c(y) = card A = \omega_0$.

Remarks. 1. It is easily seen that, if F is an ultrafilter on I and $y_i = 2^{k_i}$ for every $i \in I$ s.t. card $\Pi_{i \in I} y_i / F \geq \aleph_0$, then the algebra $A = \Pi_{i \in I} y_i / F$ includes a disjointed sequence $(a_n | n \in \omega)$ s.t. card $a_n = card A$ for every $n \in \omega$. This establishes, together with the lemma (c) in Theorem 1, a short proof of Shelah’s theorem.

2. The Corollary not only implies Theorem 2, but is, in fact, equivalent to it: let B be complete, $p: B \rightarrow A$ an epimorphism and card $A \geq \aleph_0$. Since B is an injective Boolean algebra, there is some set I and some epimorphism q from the power set of I onto B. Put $F = \{x \subseteq I | p(q(x)) = 1\}$. Then A is isomorphic to the reduced product $2^I/F$.

3. The question naturally arises whether there is also a simple way to prove Theorem 1 from the Corollary, i.e. whether every ω-complete Boolean algebra is the homomorphic image of some complete Boolean algebra. This problem seems to be unsolved. The only fact I know is

Proposition (CH). Assume A is a ω-complete Boolean algebra s.t. card $A \leq 2^{\aleph_0}$. Then there is a complete Boolean algebra B and a homomorphism p from B onto A.

Proof. If A is finite, A is complete. So, let A be infinite. Thus, card $A = 2^{\aleph_0} = \aleph_1$. Let $A = \{a_\alpha | \alpha < \aleph_1\}$. Let F be the free Boolean algebra on \aleph_1 free generators and let B be F^*, the MacNeille completion of F. Since card $B = 2^{\aleph_0} = \aleph_1$, put $B = \{b_\alpha | \alpha < \aleph_1\}$. We construct a sequence $(p_\alpha | \alpha < \aleph_1)$ of homomorphisms from subalgebras of B to A s.t. $\alpha < \beta < \aleph_1$ implies $p_\alpha \subseteq p_\beta$. $\bigcup_{\alpha < \aleph_1} p_\alpha$ is a homomorphism from B onto A and each
p_α has countable domain. Let p_0 be the homomorphism from the two-element subalgebra of B onto the two-element subalgebra of A. If λ is a countable limit ordinal, put $p_\lambda = \bigcup_{\alpha < \lambda} p_\alpha$. Now suppose $\alpha < \aleph_1$ and p_α has been constructed s.t. p_α has countable domain.

Case 1. α is even. Let b be the element of B with the least subscript s.t. $b \notin \text{dom } p_\alpha$. Since dom p_α is countable and A is σ-complete, an examination of the proof of Sikorski's extension theorem shows that p_α may be extended to the subalgebra of B generated by b and dom p_α.

Case 2. α is odd. Let a be the element of A with least subscript s.t. $a \notin \text{rng } p_\alpha$. Since dom p_α is countable, there is some $b \in B$ s.t. b is independent of dom p_α. Hence p_α may be extended to the subalgebra of B generated by b and dom p_α, putting $p_{\alpha+1}(b) = a$.

REFERENCES

MATHEMATISCHES INSTITUT, 53 BONN, BERINGSTRASSE 1, WEST GERMANY

Current address: II. Mathematisches Institut, 1 Berlin 33, Königin-Luise-Strasse 24–26, West Germany

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use