Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Higher derivations on finitely generated integral domains. II


Author: William C. Brown
Journal: Proc. Amer. Math. Soc. 51 (1975), 8-14
MSC: Primary 13B10
DOI: https://doi.org/10.1090/S0002-9939-1975-0376644-8
MathSciNet review: 0376644
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove

Theorem. Let $ A = k[{x_1}, \ldots ,{x_m}]$ be a finitely generated integral domain over a field $ k$ of characteristic zero. Then $ A$ regular, i.e. the local ring $ {A_q}$ is regular for every prime ideal $ q \subseteq A$, is equivalent to the following two conditions: (1) no prime of $ A$ of height greater than one is differential, and (2) for all $ \phi \in {\operatorname{Hom} _k}(A,A),\phi \in \operatorname{Der} _k^n(A)$ if and only if $ \Delta \phi \in \Sigma _{i = 1}^{n - 1}\operatorname{Der} _k^i(A) \cup \operatorname{Der} _k^{n - i}(A)(n = 1,2, \ldots )$.

Here $ \Delta $ denotes the Hochschild coboundary operator, $ \cup $ denotes the cup product, and $ \operatorname{Der} _k^n(R)$ is the module of higher derivations of rank $ n$.


References [Enhancements On Off] (What's this?)

  • [1] W. C. Brown, Higher derivations on finitely generated integral domains, Proc. Amer. Math. Soc. 42 (1974), 23-27. MR 0337923 (49:2692)
  • [2] A. Grothendieck, Éléments de géométrie algébrique. IV, Étude locale des schémas et des morphismes de schémas. IV, Inst. Hautes Études Sci. Publ. Math. No. 32, (1967). MR 39 #220.
  • [3] Y. Ishibashi, Some remarks on high order derivations, Pacific J. Math. 52 (1974), 419-424. MR 0366895 (51:3141)
  • [4] Y. Nakai, On the theory of differentials in commutative rings, J. Math. Soc. Japan 13 (1961), 63-84. MR 23 #A2437. MR 0125131 (23:A2437)
  • [5] -, Higher order derivations. I, Osaka J. Math. 7 (1970), 1-27. MR 41 #8404. MR 0263804 (41:8404)
  • [6] A. Seidenberg, Derivations and integral closure, Pacific J. Math. 16 (1966), 167-173. MR 32 #5686. MR 0188247 (32:5686)
  • [7] -, Differential ideals in rings of finitely generated type, Amer. J. Math. 89 (1967), 22-42. MR 35 #2902. MR 0212027 (35:2902)
  • [8] O. Zariski and P. Samuel, Commutative algebra. Vol. II, University Series in Highter Math., Van Nostrand, Princeton, N. J., 1960. MR 22 #11006. MR 0120249 (22:11006)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13B10

Retrieve articles in all journals with MSC: 13B10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0376644-8
Keywords: $ n$th order derivation, $ \operatorname{der} _k^n(A)$
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society