Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Spectra of compact composition operators


Authors: James G. Caughran and Howard J. Schwartz
Journal: Proc. Amer. Math. Soc. 51 (1975), 127-130
MSC: Primary 47B37; Secondary 30A18
MathSciNet review: 0377579
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \phi $ be holomorphic and map the open unit disk into itself, and let $ {C_\phi }:f \to f \circ \phi $ be the composition operator on $ {H^2}$ generated by $ \phi $. If $ {C_\phi }$ is a compact operator then $ (1)\phi ({z_0}) = {z_0}$ for some $ {z_0} \epsilon D$; $ (2)\sigma ({C_\phi }) = \{ \phi '{({z_0})^n}:n = 0,1,2, \ldots \} \cup \{ 0\} $.


References [Enhancements On Off] (What's this?)

  • [1] James G. Caughran, Polynomial approximation and spectral properties of composition operators on 𝐻², Indiana Univ. Math. J. 21 (1971/1972), 81–84. MR 0287006
  • [2] M. A. Denjoy, Sur l'iteration des fonctions analytiques, C. R. Acad. Sci. Paris 182 (1926), 255-257.
  • [3] Peter L. Duren, Theory of 𝐻^{𝑝} spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
  • [4] M. Koenig, Recherches sur les intégrals de certaines équations fonctionnelles, Ann. Sci. École Norm. Sup. 3 (1884), 1-112.
  • [5] Eric A. Nordgren, Composition operators, Canad. J. Math. 20 (1968), 442–449. MR 0223914
  • [6] John V. Ryff, Subordinate 𝐻^{𝑝} functions, Duke Math. J. 33 (1966), 347–354. MR 0192062
  • [7] J. H. Shapiro and P. D. Taylor, Compact, nuclear, and Hilbert-Schmidt composition operators on 𝐻², Indiana Univ. Math. J. 23 (1973/74), 471–496. MR 0326472
  • [8] J. Wolff, Sur l'iteration des fonctions..., C. R. Acad. Sci. Paris 182 (1926), 42-43, 200-201.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47B37, 30A18

Retrieve articles in all journals with MSC: 47B37, 30A18


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1975-0377579-7
Article copyright: © Copyright 1975 American Mathematical Society