Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The map of the Witt ring of a domain into the Witt ring of its field of fractions


Authors: Thomas C. Craven, Alex Rosenberg and Roger Ware
Journal: Proc. Amer. Math. Soc. 51 (1975), 25-30
MSC: Primary 13K05
DOI: https://doi.org/10.1090/S0002-9939-1975-0384789-1
MathSciNet review: 0384789
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ R$ be an integral domain with field of fractions $ K$. This paper studies the kernel of the map $ W(R) \to W(K)$, where $ W$ is the Witt ring functor. In case $ R$ is regular and noetherian, it is shown that the kernel is a nilideal. The kernel is zero if $ R$ is a complete regular local noetherian ring with 2 a unit. Examples are given to show that the regularity assumptions are needed.


References [Enhancements On Off] (What's this?)

  • [1] N. Bourbaki, Éléments de mathématique. Fasc. XXXI. Chap. 7, Algèbre commutative, Actualités Sci. Indust., no. 1314, Hermann, Paris, 1965. MR 41 #5339.
  • [2] T. C. Craven, Witt rings and orderings of fields, Ph. D. Thesis, Cornell University, Ithaca, N. Y., 1973.
  • [3] I. Kaplansky, Rings and fields, Univ. of Chicago Press, Chicago, Ill., 1969. MR 42 #4345. MR 0269449 (42:4345)
  • [4] M. Karoubi, Périodicité de la $ K$-théorie hermitienne, Algebraic $ K$-Theory III, Lecture Notes in Math., vol. 343, Springer-Verlag, Berlin and New York, 1973, pp. 301-411. MR 0382400 (52:3284)
  • [5] M. Knebusch, Grothendieck-und Wittringe von nichtausgearteten symmetrischen Bilinearformen, S.-B. Heidelberg. Akad. Wiss. Math.-Natur. Kl. 1969/70, 93-157. MR 42 #6001. MR 0271118 (42:6001)
  • [6] -, Specialization of quadratic and symmetric bilinear forms, and a norm theorem, Acta Arith. 24 (1973), 279-299. MR 0349582 (50:2075)
  • [7] -, Real closures of commutative rings. I, J. Reine Angew. Math. (to appear). MR 0387262 (52:8105)
  • [8] M. Knebusch, A. Rosenberg and R. Ware, Structure of Witt rings and quotients of abelian group rings, Amer. J. Math. 94 (1972), 119-155. MR 45 #5164. MR 0296103 (45:5164)
  • [9] -, Signatures on semi-local rings, J. Algebra 26 (1973), 208-250.
  • [10] D. G. Northcott, Ideal theory, Cambridge Tracts in Math. and Math. Phys., no. 42, Cambridge Univ. Press, Cambridge, 1953. MR 15, 390. MR 0058575 (15:390f)
  • [11] A. Pfister, Quadratische Formen in beliebigen Körpern, Invent. Math. 1 (1966), 116-132. MR 34 #169. MR 0200270 (34:169)
  • [12] O. Zariski and P. Samuel, Commutative algebra. Vol. II, University Series in Higher Math., Van Nostrand, Princeton, N. J., 1960. MR 22 #11006. MR 0120249 (22:11006)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13K05

Retrieve articles in all journals with MSC: 13K05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0384789-1
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society