Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

The map of the Witt ring of a domain into the Witt ring of its field of fractions


Authors: Thomas C. Craven, Alex Rosenberg and Roger Ware
Journal: Proc. Amer. Math. Soc. 51 (1975), 25-30
MSC: Primary 13K05
MathSciNet review: 0384789
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ R$ be an integral domain with field of fractions $ K$. This paper studies the kernel of the map $ W(R) \to W(K)$, where $ W$ is the Witt ring functor. In case $ R$ is regular and noetherian, it is shown that the kernel is a nilideal. The kernel is zero if $ R$ is a complete regular local noetherian ring with 2 a unit. Examples are given to show that the regularity assumptions are needed.


References [Enhancements On Off] (What's this?)

  • [1] N. Bourbaki, Éléments de mathématique. Fasc. XXXI. Chap. 7, Algèbre commutative, Actualités Sci. Indust., no. 1314, Hermann, Paris, 1965. MR 41 #5339.
  • [2] T. C. Craven, Witt rings and orderings of fields, Ph. D. Thesis, Cornell University, Ithaca, N. Y., 1973.
  • [3] Irving Kaplansky, Fields and rings, The University of Chicago Press, Chicago, Ill.-London, 1969. MR 0269449 (42 #4345)
  • [4] Max Karoubi, Périodicité de la 𝐾-théorie hermitienne, Algebraic 𝐾-theory, III: Hermitian 𝐾-theory and geometric applications (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Springer, Berlin, 1973, pp. 301–411. Lecture Notes in Math., Vol. 343 (French). MR 0382400 (52 #3284)
  • [5] Manfred Knebusch, Grothendieck- und Wittringe von nichtausgearteten symmetrischen Bilinearformen, S.-B. Heidelberger Akad. Wiss. Math.-Natur. Kl. 1969/70 (1969/1970), 93–157 (German). MR 0271118 (42 #6001)
  • [6] Manfred Knebusch, Specialization of quadratic and symmetric bilinear forms, and a norm theorem, Acta Arith. 24 (1973), 279–299. Collection of articles dedicated to Carl Ludwig Siegel on the occasion of his seventy-fifth birthday, III. MR 0349582 (50 #2075)
  • [7] Manfred Knebusch, Real closures of commutative rings. I, J. Reine Angew. Math. 274/275 (1975), 61–89. Collection of articles dedicated to Helmut Hasse on his seventy-fifth birthday, III. MR 0387262 (52 #8105)
  • [8] Manfred Knebusch, Alex Rosenberg, and Roger Ware, Structure of Witt rings and quotients of Abelian group rings, Amer. J. Math. 94 (1972), 119–155. MR 0296103 (45 #5164)
  • [9] -, Signatures on semi-local rings, J. Algebra 26 (1973), 208-250.
  • [10] D. G. Northcott, Ideal theory, Cambridge Tracts in Mathematics and Mathematical Physics, No. 42, Cambridge, at the University Press, 1953. MR 0058575 (15,390f)
  • [11] Albrecht Pfister, Quadratische Formen in beliebigen Körpern, Invent. Math. 1 (1966), 116–132 (German). MR 0200270 (34 #169)
  • [12] Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N. J.-Toronto-London-New York, 1960. MR 0120249 (22 #11006)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13K05

Retrieve articles in all journals with MSC: 13K05


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1975-0384789-1
PII: S 0002-9939(1975)0384789-1
Article copyright: © Copyright 1975 American Mathematical Society