THE CYCLOTONIC NUMBERS OF ORDER SEVEN

PHILIP A. LEONARD AND KENNETH S. WILLIAMS

ABSTRACT. The cyclotomic numbers of order seven are given in terms of the solutions of a certain system of three quadratic diophantine equations. This is analogous to L. E. Dickson's evaluation of the cyclotomic numbers of order five, and is a convenient approach for applications to the theory of power residues.

1. Introduction. Let \(g \) be a primitive root of an odd prime \(p \). Let \(e > 1 \) be a divisor of \(p - 1 \) and write \(p - 1 = ef \). The cyclotomic number \((h, k) = (h, k)_e \) is defined to be the number of solutions \(s, t \) of the trinomial congruence

\[
(1.1) \quad g^{es + h} + 1 \equiv g^{et + k} \pmod{p}, \quad 0 \leq s, t \leq f - 1.
\]

A central problem in the theory of cyclotomy is to obtain formulae for the numbers \((h, k) \). The cases \(e = 2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 15, 16, 18 \) and 20 have been treated by several authors, beginning with L. E. Dickson [2]-[4], with fuller treatments due to Emma Lehmer ([6], \(e = 8 \)), A. L. Whiteman ([13]-[15], \(e = 10, 12, 16 \)), J. B. Muskat ([9], \(e = 14 \)), L. Baumert and H. Fredricksen ([11], \(e = 9, 18 \)), and Muskat and Whiteman ([10], \(e = 20 \)).

When \(e = 7 \) the cyclotomic numbers can be given in terms of certain Dickson-Hurwitz sums using the work of Muskat [9, Theorem 1] or a theorem of Whiteman [15, Theorem 1]. In this paper we obtain these cyclotomic numbers in terms of the solutions of a certain triple of diophantine equations, analogous to the expressions for the cyclotomic numbers of order 5 in terms of the solutions of a pair of diophantine equations (see for example [15, p. 101]). This formulation is often useful in applications (see §3). We make use of the following recent result of the authors [7, Theorems 2 and 3]. If \(p \equiv 1 \pmod{7} \) then there are exactly six integral simultaneous solutions of

\[
\frac{1}{6} \sum_{d \mid 7} \mu(d) g^{(h, k)_d} = \frac{h + 1}{g} - \frac{h - 1}{g} = \frac{1}{g} - \frac{1}{g} = 0.
\]
the triple of diophantine equations

\[(1.2) \quad 72p = 2x_1^2 + 42(x_2^2 + x_3^2 + x_4^2) + 343(x_5^2 + 3x_6^2), \]

\[(1.3) \quad 12x_2^2 - 12x_4^2 + 147x_5^2 - 441x_6^2 + 56x_4x_6 + 24x_2x_3 - 24x_2x_4 + 48x_3x_4 + 98x_5x_6 = 0, \]

\[(1.4) \quad 12x_3^2 - 12x_4^2 + 49x_5^2 - 147x_6^2 + 28x_1x_5 + 28x_1x_6 + 48x_2x_3 + 24x_2x_4 + 24x_3x_4 + 490x_5x_6 = 0, \]

satisfying \(x_1 \equiv 1 \pmod{7} \), distinct from the two "trivial" solutions \((-6t, \pm2u, \pm2u, \mp2u, 0, 0)\), where \(t \) is given uniquely and \(u \) is given ambiguously by

\[(1.5) \quad p = t^2 + 7u^2, \quad t \equiv 1 \pmod{7}. \]

If \((x_1, x_2, x_3, x_4, x_5, x_6)\) is a nontrivial solution with \(x_1 \equiv 1 \pmod{7} \) then two others are given by \((x_1, -x_3, x_4, x_2, \frac{1}{2}(-x_2 - 3x_6), \frac{1}{2}(x_5 - x_6))\) and \((x_1, -x_4, x_2, -x_3, \frac{1}{2}(-x_2 + 3x_6), \frac{1}{2}(-x_5 - x_6))\). Each of the other three can be obtained from one given above by changing the signs of \(x_2, x_3, x_4 \). It is surprising to us that this result, which parallels a similar result (see for example [2, I, Theorem 8]) for \(p \equiv 1 \pmod{5} \), and which is implicit in the work of Dickson [2], [3], does not appear in the literature. See [5] and [11, p. 128] for comments related to \(p \equiv 1 \pmod{7} \).

2. Calculation of the cyclotomic numbers of order 7. The numbers \((b, k)\) satisfy the following well-known relations [11, p. 25]:

\[(2.1) \quad (b, k) = (b + ae, k + be) \text{ for any integers } a \text{ and } b, \]

\[(2.2) \quad (b, k) = (k, b) \text{ if } f \text{ is even}, \]

\[(2.3) \quad (b, k) = (e - b, k - b). \]

With \(e = 7 \) the formulae (2.1), (2.2), (2.3) yield the matrix

\[
\begin{bmatrix}
A & B & C & D & E & F & G \\
B & G & H & I & J & K & H \\
C & H & F & K & L & L & I \\
D & I & K & E & J & L & J \\
E & J & L & J & D & I & K \\
F & K & L & L & I & C & H \\
G & H & I & J & K & H & B
\end{bmatrix}
\]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
in which the letter in the hth row and kth column, $h, k = 0, 1, 2, \ldots, 6$, represents the value of (h, k). Thus the evaluation of the $e^2 = 49$ cyclotomic numbers of order 7 reduces to the determination of the 12 quantities $A, B, C, D, E, F, G, H, I, J, K, L$. (2.4) has been given by Whiteman [12, p. 63].

Let g be any primitive root of the prime $p \equiv 1 \pmod{7}$ and set $\zeta = \exp(2\pi i/7)$. For any integers m and n we define the Jacobi sum $J(m, n)$ by

$$J(m, n) = \sum_{x, y \equiv 1; x + y \equiv 1 \pmod{p}} \zeta^m \text{ind}_g x + n \text{ind}_g y,$$

where $\text{ind}_g x$ denotes the unique integer k such that $x \equiv g^k \pmod{p}$, $0 \leq k \leq p - 2$. It was shown in [7] that

$$J(1, 1) = \sum_{i=1}^{6} c_i \zeta^i,$$

the integers c_1, \ldots, c_6 being given by

$$12c_1 = -2x_1 + 6x_2 + 7x_5 + 21x_6, \quad 12c_4 = -2x_1 - 6x_4 - 14x_5,$$

$$12c_2 = -2x_1 + 6x_3 + 7x_5 - 21x_6, \quad 12c_5 = -2x_1 - 6x_3 + 7x_5 - 21x_6,$$

$$12c_3 = -2x_1 + 6x_4 - 14x_5, \quad 12c_6 = -2x_1 - 6x_2 + 7x_5 + 21x_6,$$

where $(x_1, x_2, x_3, x_4, x_5, x_6)$ is a nontrivial solution of $(1.1)-(1.3)$ satisfying $x_1 \equiv 1 \pmod{7}$, and

$$J(1, 2) = -t + u\sqrt{-7},$$

where the integers t and u satisfy $p = t^2 + 7u^2$, $t \equiv 1 \pmod{7}$.

The Dickson-Hurwitz sums of order 7 are defined by

$$J(1, i) = \sum_{i=0}^{6} B(i, j) \zeta^i \quad (j = 0, 1, \ldots, 6),$$

and

$$\sum_{i=0}^{6} B(i, j) = p - 2.$$

They have the following properties (see for example [15, p. 97]):

$$B(i, j) = B(i, 6 - j),$$

$$B(i, 0) = \begin{cases} f - 1 & \text{if } i = 0, \\ f & \text{if } 1 < i < 6, \end{cases}$$
\[B(i, j) = B(i-j, j) \quad \text{if } j \neq 0 \text{ and } j^7 \equiv 1 \pmod{7}. \]

Since \(\sum_{i=1}^{6} c_i = -x_1 \) by (2.6), (2.8) and (2.9) we obtain for \(i = 1, 2, \ldots, 6 \),

\[B(i, 1) = c_i + B(0, 1) = c_i + (p - 2 + x_1)/7. \]

Also as \(-1 = \zeta + \zeta^2 + \zeta^3 + \zeta^4 + \zeta^5 + \zeta^6 \) and \(\sqrt{-7} = \zeta + \zeta^2 - \zeta^3 + \zeta^4 - \zeta^5 - \zeta^6 \), we obtain from (1.5), (2.7), (2.8), (2.9)

\[7B(0, 2) = -6t + p - 2, \]

(2.14)

\[7B(1, 2) = 7B(2, 2) = 7B(4, 2) = t + 7u + p - 2, \]

\[7B(3, 2) = 7B(5, 2) = 7B(6, 2) = t - 7u + p - 2. \]

Equation (2.14) is due to Muskat [9, p. 270]. Whiteman [15, Theorem 1] has shown that

\[7b(b, k) = \sum_{v=0}^{6} B(vb + k, v) - 6f + \begin{cases} 1 & \text{if } 7 \nmid b, \\ 0 & \text{if } 7 \mid b. \end{cases} \]

Using this together with (2.6), (2.10), (2.11), (2.12), (2.13) and (2.14) we obtain the cyclotomic numbers in terms of \(t, u, x_1, \ldots, x_6 \). In applying these expressions given in the Theorem below we must indicate how the sign of \(u \) is to be chosen given a nontrivial solution \((x_1, \ldots, x_6) \) of (1.2)—(1.4) satisfying \(x_1 \equiv 1 \pmod{7} \). If \(7 \nmid u \) this is easy as we see from the Theorem that \(7(B - G) = 4u + 2x_2 - x_3 \), so we need only choose \(u \) such that

\[u \equiv 3x_2 + 2x_3 \pmod{7}. \]

If however \(7 \mid u \) it appears to be necessary to use (2.5), (2.6), (2.7) and the identity

\[pj(1, 2) = j(1, 1)j(2, 2)j(4, 4). \]

Thus, for example, when \(p = 379 \) a nontrivial solution of (1.2)—(1.4) with \(x_1 \equiv 1 \pmod{7} \) is given by

\[x_1 = -13, \quad x_2 = 10, \quad x_3 = 13, \quad x_4 = -12, \quad x_5 = -5, \quad x_6 = 1, \]

and so by (2.6) we have

\[c_1 = 6, \quad c_2 = 4, \quad c_3 = 2, \quad c_4 = 14, \quad c_5 = -9, \quad c_6 = -4. \]

Using these values in (2.5) and computing \(j(1, 1)j(2, 2)j(4, 4) \) we obtain from (2.7) and (2.16) that \(t = -6, \quad u = -7. \)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Theorem. Let \(p \) be a prime \(\equiv 1 \pmod{7} \). If \((x_1, \ldots, x_6) \) is any non-trivial solution of (1.2)-(1.4) with \(x_1 \equiv 1 \pmod{7} \) and \((t, u)\) is the solution of (1.5) with \(t \equiv 1 \pmod{7} \) and \(u \) given by (2.15) or by (2.16) as indicated above, then for some primitive root \(g \pmod{p} \) the cyclotomic numbers of order 7 are given by (2.4) and

\[
\begin{align*}
49A & = p - 20 - 12t + 3x_1, \\
588B & = 12p - 72 + 24t + 168u - 6x_1 + 84x_2 - 42x_3 + 147x_4 + 147x_6, \\
588C & = 12p - 72 + 24t + 168u - 6x_1 + 84x_3 + 42x_4 - 294x_6, \\
588D & = 12p - 72 + 24t - 168u - 6x_1 + 42x_2 + 84x_4 - 147x_5 + 147x_6, \\
588E & = 12p - 72 + 24t + 168u - 6x_1 - 42x_2 - 84x_4 - 147x_5 + 147x_6, \\
588F & = 12p - 72 + 24t - 168u - 6x_1 + 84x_3 - 42x_4 - 294x_6, \\
588G & = 12p - 72 + 24t - 168u - 6x_1 - 84x_3 + 42x_4 + 147x_5 + 147x_6, \\
588H & = 12p + 12 + 24t + 8x_1 - 196x_5, \\
588I & = 12p + 12 - 60t - 84u - 6x_1 + 42x_2 + 42x_3 - 42x_4, \\
588J & = 12p + 12 + 24t + 8x_1 + 98x_5 - 294x_6, \\
588K & = 12p + 12 - 60t + 84u - 6x_1 - 42x_2 - 42x_3 + 42x_4, \\
588L & = 12p + 12 + 24t + 8x_1 + 98x_5 + 294x_6.
\end{align*}
\]

3. An application. It is well known (see for example [11, p. 26]) that 2 is a seventh power \(\pmod{p} \) if and only if \((0, 0) \equiv 1 \pmod{2} \), that is by the Theorem if and only if \(x_1 \equiv 0 \pmod{2} \). Note that \(x_1 \equiv 1 \pmod{7} \) is given uniquely by the system (1.2)-(1.4). For further results of this kind see [8].

REFERENCES

DEPARTMENT OF MATHEMATICS, ARIZONA STATE UNIVERSITY, TEMPE, ARIZONA 85281

DEPARTMENT OF MATHEMATICS, CARLETON UNIVERSITY, OTTAWA, ONTARIO, K1S 5B6, CANADA (Current address of both authors)