INTERSECTING UNIONS OF CONVEX SETS IN \mathbb{R}^n

Marilyn Breen

ABSTRACT. Let $\mathcal{C} = \{C_a : a \text{ in some index set } I\}$ be a collection of convex sets, and let $\mathfrak{M} = \{C_a \cup C_{\beta} : a \neq \beta, C_a, C_\beta \text{ in } \mathcal{C}\}$. In this paper, various decomposition theorems are obtained for the set $\bigcap \mathfrak{M}$.

1. Introduction. In [1], it is proved that if \mathcal{C} is a collection of closed convex sets in the plane and if $\mathfrak{M} = \{A \cup B : A, B \text{ distinct members of } \mathcal{C}\}$, then the set $\bigcap \mathfrak{M}$ is expressible as a union of three or fewer closed convex sets. In this paper, an attempt is made to obtain similar decompositions without the restriction that \mathcal{C} be planar. Although several theorems are stated for an arbitrary linear topological space, restrictions on the convex sets reduce the setting to \mathbb{R}^n, and all the theorems are essentially finite dimensional ones. Throughout the paper, $\text{aff } S$ and $\text{ker } S$ will be used to denote the affine hull and kernel, respectively, for the set S. If S is convex, $\dim S$ will denote the dimension of the affine hull of S, and for convenience, we say that the dimension of the null set is -1.

2. Decomposition theorems for $\bigcap \mathfrak{M}$. The following easy lemmas will be useful.

Lemma 1. Let $\mathcal{C} = \{C_a : a \text{ in some index set } I\}$ be a collection of sets, and let $\mathfrak{M} = \{C_{a_1} \cup \ldots \cup C_{a_k} : a_1, \ldots, a_k \text{ distinct members of } I\}$. Then $x \in \bigcap \mathfrak{M}$ if and only if there are at most $k - 1$ members a in I for which $x \notin C_a$.

Lemma 2. Let $\mathcal{C} = \{C_a : a \text{ in some index set } I\}$ be a collection of convex sets in some linear topological space, and let $\mathfrak{M} = \{C_{a_1} \cup \ldots \cup C_{a_k} : a_1, \ldots, a_k \text{ distinct members of } I\}$. Then $\bigcap \mathcal{C} \subseteq \ker(\bigcap \mathfrak{M})$.

Theorem 1. Let $\mathcal{C} = \{C_a : a \text{ in some index set } I\}$ be a collection of convex sets in some linear topological space, and assume that, for some $n \geq 1$, at least $n + 1$ of these sets have dimension no greater than $n - 1$.

Received by the editors April 1, 1974 and, in revised form, June 7, 1974.
Key words and phrases. Unions of convex sets, maximal convex subsets.

Copyright © 1975, American Mathematical Society
Letting $\mathcal{M} = \{ \mathcal{C}_\alpha \cup \mathcal{C}_\beta : \alpha \neq \beta, \mathcal{C}_\alpha, \mathcal{C}_\beta \in \mathcal{E} \}$, if $\dim \text{aff}(\bigcap \mathcal{M})$ is at least n, then $\bigcap \mathcal{M}$ is a union of $n + 1$ or fewer convex sets, each containing $\bigcap \mathcal{C}$. The number $n + 1$ is best possible for every n.

Proof. We use an inductive argument. If $n = 1$, then at least two members A, B of \mathcal{C} are singleton sets, $\bigcap \mathcal{M} \subseteq A \cup B$, and trivially $\bigcap \mathcal{M}$ consists of exactly two points.

Assume that the result is true for every integer $m, 1 \leq m \leq n - 1$, to prove for n. There are two cases to consider.

Case 1. Suppose that there are $n + 1$ affinely independent points x_1, \ldots, x_{n+1} of $\bigcap \mathcal{M}$ not in $\bigcap \mathcal{C}$. Then for each i, $1 \leq i \leq n + 1$, we may select a corresponding set A_i in \mathcal{C} with $x_i \notin A_i$. For any C in $\mathcal{C} \sim \{ A_1, \ldots, A_{n+1} \}$, C necessarily contains each of the $n + 1$ affinely independent points x_1, \ldots, x_{n+1}, and so $\dim C \geq n$. Hence the A_i sets must be exactly those members of \mathcal{C} which have dimension no greater than $n - 1$, and the A_i sets are necessarily distinct, $1 \leq i \leq n + 1$. Then each A_i must contain each of the n points $x_j, j \neq i, 1 \leq j \leq n + 1$. Since the points x_1, \ldots, x_{n+1} are vertices of an n-dimensional simplex, each A_i lies in the affine hull of a facet of the simplex. Therefore $A_1 \cap \ldots \cap A_{n+1} = \emptyset$ and $\bigcap \mathcal{M}$ is just the union of the $n + 1$ convex sets B_i, where $B_i = \bigcap \{ C : C \in \mathcal{C}, C \notin A_i \} = \{ x_i \}, 1 \leq i \leq n + 1$.

Case 2. If there are at most $k + 1 < n + 1$ affinely independent points x_1, \ldots, x_{k+1} of $\bigcap \mathcal{M}$ not in $\bigcap \mathcal{C}$, these points lie in a k-dimensional flat π (and clearly we may assume $0 \leq k$ for otherwise the result is trivial). Select points x_{k+2}, \ldots, x_{n+1} in $\bigcap \mathcal{M}$ so that $x_1, \ldots, x_{k+1}, x_{k+2}, \ldots, x_{n+1}$ are affinely independent. Then each of the $n - k$ points x_{k+2}, \ldots, x_{n+1} must lie in $\bigcap \mathcal{C}$. For each of the members A of \mathcal{C} for which $\dim A \leq n - 1$, there are no more than $n - (n - k) = k$ affinely independent points of A in π, and $\dim(A \cap \pi) \leq k - 1$. Hence $\mathcal{C}' = \{ C \cap \pi : C \in \mathcal{C} \}$ is a collection of convex sets, at least $n + 1 > k + 1$ of which have dimension no greater than $k - 1$. Letting $\mathcal{M}' = \{ \mathcal{C}_\alpha \cup \mathcal{C}_\beta : \alpha \neq \beta, \mathcal{C}_\alpha, \mathcal{C}_\beta \in \mathcal{C}' \}$, $\dim \text{aff}(\bigcap \mathcal{M}') = \dim \text{aff}(\bigcap \mathcal{C} \cap \pi) = k$. Therefore, by our induction hypothesis, $\bigcap \mathcal{M}'$ is a union of $k + 1$ or fewer convex sets, say S_1', \ldots, S_{k+1}', each containing $\bigcap \mathcal{C}'$.

We assert that $\bigcap \mathcal{M}$ is a union of the $k + 1$ convex sets $S_i = S_i' \cup (\bigcap \mathcal{C})$, $1 \leq i \leq k + 1$: For x in $\bigcap \mathcal{M}$ and x not in any S_i', $1 \leq i \leq k + 1$, then $x \notin \pi$, so x must belong to every C in \mathcal{C}. Hence $S_1 \cup \ldots \cup S_{k+1} = \bigcap \mathcal{M}$. To show that each S_i is convex, clearly we need only consider r in S_i', s in $\bigcap \mathcal{C}$.
to show that \([s, r] \subseteq S_i\). Now by Lemma 2, \(s\) is in \(\text{ker}(\bigcap C_i)\), so \([s, r] \subseteq \bigcap C_i\). If \(s \in \pi\), the result is immediate since \(\bigcap C_i \subseteq S_i\). Otherwise, \([s, r] \cap \pi = \emptyset\), so \([s, r] \subseteq \bigcap C_i \sim \pi \subseteq \bigcap C\), and \([s, r] \subseteq (\bigcap C) \cup S_i = S_i\). Thus \(S_i\) is convex, \(1 \leq i \leq k + 1\), and the assertion is proved, finishing Case 2.

This completes the inductive argument, and we conclude that the statement of the theorem is true for every integer \(n \geq 1\).

Remark. To see that the bound of \(n + 1\) in Theorem 1 is best possible, refer to Example 1 of this paper.

Theorem 2. Let \(\mathcal{C} = \{C_\alpha: \alpha \in \text{some index set } I\}\) be a collection of convex sets in \(R^n\), \(n \geq 1\), and let \(\mathcal{M} = \{C_\alpha \cup C_\beta: \alpha \neq \beta, C_\alpha, C_\beta \in \mathcal{C}\}\). If there is an \(n + 1\) member subset \(J\) of \(I\) such that \(\text{aff}(C_\alpha \cap (\bigcap \mathcal{M})) \neq \text{aff}(C_\beta \cap (\bigcap \mathcal{M}))\) for \(\alpha \neq \beta, \alpha \in J, \beta \in I\), then \(\bigcap \mathcal{M}\) is a union of \(n + 1\) or fewer convex sets, each containing \(\bigcap \mathcal{C}\). The number \(n + 1\) is best possible.

Proof. The inductive argument of Theorem 1 may be suitably adapted to yield the result. The only significant difference appears in Case 2: As in Case 2, affinely independent points \(x_1, \ldots, x_{k+1}, x_{k+2}, \ldots, x_{j+1}\) are selected in \(\bigcap \mathcal{M}\) with \(x_1, \ldots, x_{k+1}\) in the \(k\)-dimensional flat \(\pi\) and not in \(\bigcap \mathcal{C}\), and \(x_{k+2}, \ldots, x_{j+1}\) in \(\bigcap \mathcal{C} \sim \pi\), where \(j = \dim \text{aff}(\bigcap \mathcal{M})\) and \(0 \leq k \leq j\). Then for \(\alpha \in J, \beta \in I, \alpha \neq \beta\),

\[
\text{aff}(C_\alpha \cap \pi \cap (\bigcap \mathcal{M})) \neq \text{aff}(C_\beta \cap \pi \cap (\bigcap \mathcal{M})),
\]

for otherwise

\[
\text{aff}([C_\alpha \cap \pi \cap (\bigcap \mathcal{M})] \cup \{x_{k+2}, \ldots, x_{j+1}\}) = \text{aff}([C_\beta \cap \pi \cap (\bigcap \mathcal{M})] \cup \{x_{k+2}, \ldots, x_{j+1}\}),
\]

and since \(x_{k+2}, \ldots, x_{j+1}\) are in every \(C\) in \(\mathcal{C}\),

\[
\text{aff}(C_\alpha \cap (\bigcap \mathcal{M})) = \text{aff}(C_\beta \cap (\bigcap \mathcal{M})),
\]

clearly impossible. Hence the induction hypothesis may be applied to the sets \(\mathcal{C}'\) and \(\bigcap \mathcal{M}'\) of Case 2 to complete the argument.

The following example shows that the bound of \(n + 1\) in Theorems 1 and 2 is best possible.

Example 1. For \(n \geq 1\), let \(T\) denote an \(n\)-dimensional simplex and \(\mathcal{C}\) the collection of facets of \(T\). Then \(\mathcal{C}\) has \(n + 1\) members, \(\bigcap \mathcal{C} = \emptyset\), and \(\bigcap \mathcal{M}\) is the collection of points which lie in exactly \(n\) facets of \(T\). Hence
\(\cap M \) is just the vertex set of \(T \) and consists of \(n + 1 \) isolated points.

Another kind of decomposition is given in Theorem 3.

Theorem 3. Let \(C = \{ C_\alpha : \alpha \text{ in some index set } I \} \) be a collection of closed convex sets, and let \(M = \{ C_\alpha \cup C_\beta : \alpha \neq \beta, C_\alpha, C_\beta \text{ in } C \} \). If for some \(k \geq 1 \) members \(\alpha_1, \ldots, \alpha_k \) in \(I \), \(\dim (C_{\alpha_1} \cap \cdots \cap C_{\alpha_k}) \leq i \), \(-1 \leq i \leq 2 \), then \(\cap M \) is a union of \(k + i + 1 \) or fewer closed convex sets. The bound is best possible for every pair \(k, i \).

Proof. For convenience of notation, let \(C_{\alpha_i} = C_i, 1 \leq i \leq k \), and define \(D_i = \bigcap \{ C : C \in C, C \neq C_i \} \). For \(x \) in \(\bigcap M \), either \(x \) lies in one of the closed convex sets \(D_i, 1 \leq i \leq k \), or \(x \in C_1 \cap \cdots \cap C_k \).

We assert that the set \(C_1 \cap \cdots \cap C_k \cap (\bigcap M) \) is expressible as a union of \(i + 1 \) or fewer closed convex sets: Define \(C' = \{ C_1' : C \in C, C \neq C_i \} \), and let \(M' = \{ C_\alpha' : \alpha \neq \beta, C_\alpha', C_\beta' \text{ in } C' \} \). Then \(C_1 \cap \cdots \cap C_k \cap (\bigcap M) \) is exactly \(\bigcap M' \). If \(i = 2 \), then \(C' \) is a collection of closed convex sets in the plane, and by suitably adapting Theorem 1 in [1], \(\bigcap M' \) is a union of three or fewer closed convex sets, the desired result. In case \(i = 1 \), techniques used in [1] may be used to show that \(\bigcap M' \) is a union of 2 or fewer closed convex sets. For \(i = 0 \) or \(i = -1 \), the result is trivial.

Therefore, \(C_1 \cap \cdots \cap C_k \cap (\bigcap M) \) is a union of \(i + 1 \) closed convex sets, and hence \(\bigcap M \) is a union of \(k + i + 1 \) or fewer closed convex sets, finishing the proof of Theorem 3.

Example 2 reveals that the bound \(k + i + 1 \) is best possible for every pair \(k, i \).

Example 2. For a given \(k \geq 1 \) and for \(-1 \leq i \leq 2 \), if \(k + i \geq 1 \), let \(C \) denote the \(k + i + 1 \) facets of a simplex \(T \) in \(R^{k+i} \). Then \(k \) members of \(C \) intersect in an \(i \)-dimensional set, and \(\bigcap M \), the vertex set of \(T \), is a union of \(k + i + 1 \) closed convex sets. If \(k + i = 0 \), some member of \(C \) is empty, and \(\bigcap M \) is convex.

Corollary. If \(C \) is a finite collection of closed convex sets in \(R^n \) and \(\dim (\bigcap C) \leq 2 \), then the corresponding set \(\bigcap M \) is a union of \(\sigma(n) + 3 \) or fewer closed convex sets, where \(\sigma(n) = \max (n + 1, 2n - 4) \).

Proof. By a theorem of Katchalski [2], if all \(\sigma(n) \) sets in \(C \) have at least a 3-dimensional intersection, then so does \(\bigcap C \). Hence if \(\dim (\bigcap C) \leq 2 \), there are some \(\sigma(n) \) sets in \(C \) whose intersection has dimension no more than 2. By Theorem 3, \(\bigcap M \) is a union of \(\sigma(n) + 2 + 1 \) or fewer closed convex sets.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
REFERENCES

A CHARACTERIZATION OF THE KERNEL OF A CLOSED SET

MARILYN BREEN

ABSTRACT. Let S be a closed subset of some linear topological space such that $\text{int} \ker S \neq \emptyset$ and $\ker S \neq S$. Let \mathcal{C} denote the collection of all maximal convex subsets of S and, for any fixed $k \geq 1$, let $\mathcal{K} = \{ A_1 \cup \cdots \cup A_k : A_1, \ldots, A_k \text{ distinct members of } \mathcal{C} \}$. Then $\mathcal{K} \neq \emptyset$ and $\bigcap \mathcal{K} = \ker S$.

If \mathcal{C} is the collection of all maximal convex subsets of some set S, it is easy to show that $\bigcap \mathcal{C} = \ker S$. This paper provides an interesting and perhaps surprising analogue of this well-known result. Throughout the paper, $\text{conv } S$, $\text{int } S$, and $\ker S$ will be used to denote the convex hull, interior, and kernel, respectively, for the set S.

Further, we will make use of these familiar definitions: For points x, y in a set S, we say x sees y via S if and only if the corresponding segment $[x, y]$ lies in S. A subset T of S is said to be a visually independent subset of S if and only if for every x, y in T, $x \neq y$, x does not see y via S.

Received by the editors April 1, 1974 and, in revised form, June 7, 1974.

AMS (MOS) subject classifications (1970). Primary 52A05.

Key words and phrases. Convex kernel, maximal convex subsets, unions of convex sets.