Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A class of $ L\sp{p}$-bounded pseudo-differential operators


Author: Reinhard Illner
Journal: Proc. Amer. Math. Soc. 51 (1975), 347-355
MSC: Primary 47G05; Secondary 35S05
DOI: https://doi.org/10.1090/S0002-9939-1975-0383153-9
MathSciNet review: 0383153
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Pseudo-differential operators with symbol $ p(x,\xi ,y) \in S_{\rho ,\delta ,\varepsilon }^\mu ,\mu \leq (\rho - 1)(n + 1)$, are proven to be generally $ {L^p}$-bounded for $ 1 < p < \infty $.


References [Enhancements On Off] (What's this?)

  • [1] A. P. Calderón and R. Vaillancourt, A class of bounded pseudo-differential operators, Proc. Nat. Acad. Sci. U. S. A. 69 (1972), 1185-1187. MR 45 #7532. MR 0298480 (45:7532)
  • [2] L. Hörmander, Estimates for translation invariant operators in $ {L^p}$-spaces, Acta Math. 104 (1960), 93-140. MR 22 #12389. MR 0121655 (22:12389)
  • [3] -, On the $ {L^2}$ continuity of pseudo-differential operators, Comm. Pure Appl. Math. 24 (1971), 529-535. MR 43 #6779. MR 0281060 (43:6779)
  • [4] S. G. Mihlin, Multidimensional singular integrals and integral equations, Fizmatgiz, Moscow, 1962; English transl., Pergamon Press, New York, 1965. MR 27 #5105; 32 #2866. MR 0185399 (32:2866)
  • [5] T. Muramatu, On the boundedness of a class of operator-valued pseudo-differential operators in $ {L^p}$-space, Proc. Japan Acad. 49 (1973), 94-99. MR 0333844 (48:12166)
  • [6] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Ser., no. 30, Princeton Univ. Press, Princeton, N. J., 1970. MR 44 #7280. MR 0290095 (44:7280)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47G05, 35S05

Retrieve articles in all journals with MSC: 47G05, 35S05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0383153-9
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society