THE GENUS OF SUBFIELDS OF $K(n)$

JOSEPH B. DENNIN, JR.

ABSTRACT. In this paper we fix a genus g and show that the number of fields of elliptic modular functions F of genus g is finite.

1. Introduction. Let Γ be the group of linear fractional transformations $w \mapsto (aw + b)/(cw + d)$ of the upper half plane into itself with integer coefficients and determinant 1. Γ is isomorphic to the group of 2×2 matrices with integer entries and determinant 1 in which a matrix is identified with its negative. $\Gamma(n)$, the principal congruence subgroup of level n, is the subgroup of Γ consisting of those elements for which $a \equiv d \equiv 1 \pmod{n}$ and $b \equiv c \equiv 0 \pmod{n}$. G is called a congruence subgroup of level n if G contains $\Gamma(n)$ and n is the smallest such integer. G has a fundamental domain in the upper half plane which can be compactified to a Riemann surface and then the genus of G is defined to be the genus of the Riemann surface. We denote by $K(n)$ the field of elliptic modular functions of level n, i.e., the field of meromorphic functions on the Riemann surface corresponding to $\Gamma(n)$.

If j is the absolute Weierstrass invariant, $K(n)$ is a finite Galois extension of $C(j)$ with $\Gamma/\Gamma(n)$ for Galois group. $SL(2, n)$ is the special linear group of degree two with coefficients in $\mathbb{Z}/n\mathbb{Z}$ and $LF(2, n) = SL(2, n)/\pm I$ where I is the identity matrix. Then $\Gamma/\Gamma(n) \cong LF(2, n)$. If $\Gamma(n) \subseteq G \subseteq \Gamma$ and H is the corresponding subgroup of $LF(2, n)$, then by Galois theory H corresponds to a subfield F of $K(n)$ and the genus of F, denoted by $g(F)$, equals the genus of G.

In this paper we fix a genus g and show that the number of F such that $C(j) \subseteq F \subseteq K(n)$ for some n and such that $g(F) = g$ is finite. More precisely we prove that, for the fixed g, there are constants r, t_1, \ldots, t_r such that any field of genus g is a subfield of $K(p_1^{t_1} \cdots p_r^{t_r})$ where p_1, \ldots, p_r are the first r primes arranged in their natural order. A corollary to this result is a proof of a conjecture of H. Rademacher that the number of congruence subgroups of Γ of genus 0 is finite. Some previous results on the Rademacher
conjecture have been obtained by Knopp and Newman [5], McQuillan [8] and the present author [1], [2]. The case of arbitrary genus \(g \) and \(n = p^m \), a prime power, has been considered in [3]. The proof of the theorem is in two steps. First we show that there is an \(r \) such that any field of genus \(g \) is a subfield of \(K(p_1^{x_1} \cdots p_r^{x_r}) \) for some \(x_i, 1 \leq i \leq r \). Then we find constants \(t_1, \ldots, t_r \) such that any field of genus \(g \) is a subfield of \(K(p_1^{t_1} \cdots p_r^{t_r}) \).

2. Preliminaries. The following notation will be standard. \(G(L/K) \) is the Galois group of \(L \) over \(K \). \(g(K) \) is the genus of \(K \). \(K \cdot K' \) is the composite of \(K \) and \(K' \) considered in some larger field containing both \(K \) and \(K' \). \(|A| \) denotes the order of the group \(A \). \(\langle c \rangle \) is the group generated by \(c \). With the primes considered in their natural order, \(p_i \) is the \(i \)th prime. \(p_r \) is the largest prime \(p \) such that, for some \(x \), \(K(p^x) \) contains a field of genus \(\leq g \) other than \(C(x) \). \(p_r \) exists by [3, Proposition 2.6] and is larger than 3.

Suppose \(G \) is a subgroup of \(G_1 \times G_2 \). Let \(N_i = \) the projection of \(G \) onto \(G_i \), \(ft_1 = \{g_1|g_1 \in G_1, (g_1, 1) \in G\} \), \(ft_2 = \{g_2|g_2 \in G_2, (1, g_2) \in G\} \). \(ft_i \) is called the \(i \)th foot of \(G \). We will use extensively the following proposition on subgroups of the direct product of two finite groups which can be found in [7].

Proposition 1. Suppose \(G \subseteq G_1 \times G_2 \) with \(G_1, G_2 \) finite. Then \(ft_i \) is a normal subgroup of \(N_i, i = 1, 2 \), and \(N_1/ft_1 \cong N_2/ft_2 \).

We now collect some basic facts about the groups \(LF(2, m) \) which we will need. \(|LF(2, m)| = \frac{m}{\phi(m)} \phi(m) \) where \(\phi(m) \) is the Euler \(\phi \) function and \(\phi(m) = m \Pi_p\phi(m)|1 + 1/p \). Suppose \(p \) is a prime and consider the natural homomorphism \(f^n: LF(2, p^n) \rightarrow LF(2, p) \) defined by reduction modulo \(p \), \(1 \leq r < n \). The kernel of \(f^n = K' \) and \(|K'| = p^3(n-r) \) if \(p \neq 2, r \neq 1; |K'| = 2^{3n-4} \) for \(p = 2 \). For \(p > 3 \), the only nontrivial normal subgroups of \(LF(2, p^n) \) are \(K^n, 1 \leq r < n \) [7]. The following lemma is proven in [4] for \(p > 2 \) and in [2] for \(p = 2 \).

Lemma 1. If \(|H \cap K^n_{n-1}| \leq p^2 \), then \(|H \cap K^n_t| \leq p^{2n-2t}, 1 \leq t \leq n-1 \).

As an easy corollary to this we have

Corollary 1. If \(H \) is a subgroup of \(K^n_t \) and \(|H| \geq 2n - 2t + r \) for some \(r, 1 \leq r \leq n-t \), then \(K^n_{n-r} \subseteq H \).

The following is a collection of facts about fields and Galois groups which we will use. The proofs are straightforward and most can be found in a standard text such as Lang [6]. Suppose \(K \) and \(K' \) are subfields of \(L \) and \(K \cap K' = k \).
(1) \(G(L/K \cdot K') = G(L/K) \cap G(L/K') \).
(2) \(G(L/k) = G(L/K) \cdot G(L/K') \) if \(K \) or \(K' \) is normal over \(k \).
(3) \(G(K \cdot K'/k) \cong G(K/k) \times G(K'/k) \) with the isomorphism given by projecting \(\sigma \) in \(G(K \cdot K'/k) \) onto both factors.
(4) \(G(K \cdot K'/K) \cong G(K'/k) \) with the isomorphism given by restricting \(\sigma \) in \(G(K \cdot K'/k) \) to \(K' \).
(5) If \(k \subseteq M \subseteq L \) and \(k \subseteq F \subseteq K \) are fields with \(L \cap K = k \), then in \(K \cdot L, (F \cdot L) \cap (K \cdot M) = F \cdot M \).

3. Main results. Let \(n = mp^s \) with \((p, m) = 1 \) and \(p \) the largest prime dividing \(n \). Consider the following diagram of fields and Galois groups.

\[\begin{array}{c}
K(n) \\
| \quad | \\
G(m) \\
| \quad | \\
\langle c \rangle \\
| \quad | \\
G(p^s) \\
| \\
K(m) \\
| \\
K(p^s) \\
| \\
LF(2,m) \\
| \\
C(j) \\
\end{array} \]

\(G \cong LF(2, m) \times LF(2, p^s) \). \(G(m) \) is the kernel of the natural homomorphism from \(LF(2, n) \) to \(LF(2, m) \) and equals \(\{ \pm(a/b) | a \equiv d \equiv 1, b \equiv c \equiv 0 \pmod{m} \} \). \(\langle c \rangle \) has order 2 and is the kernel of the homomorphism from \(LF(2, n) \) to \(G \). By the Chinese remainder theorem, \(c = \pm(a/0, b) \) with \(a \equiv 1 \pmod{m} \) and \(a \equiv -1 \pmod{p^s} \). Hence \(\langle c \rangle \) is contained in the center of \(LF(2, n) \).

Lemma 2. \(G(m) \cong SL(2, p^s) \).

Proof. Consider \(\theta : SL(2, p^s) \times \{ \begin{pmatrix} 1 \\ 0 \\ \end{pmatrix} \} \to LF(2, m) \) given by:

\[
SL(2, p^s) \times \begin{pmatrix} 1 \\ 0 \\ \end{pmatrix} \xrightarrow{\ i \ } SL(2, p^s) \times SL(2, m) \\
\xrightarrow{\ f \ } SL(2, n) \xrightarrow{\ g \ } LF(2, n) \xrightarrow{\ h \ } LF(2, m)
\]

where \(i \) is the injection, \(f \) is the isomorphism given by the Chinese remainder theorem, \(g \) is reduction mod \(\pm I \) and \(h \) is the natural homomorphism.

Then \(G(m) \) equals the kernel of \(h \) and \(g \circ f \circ i \) is 1-1 into \(G(m) \) since the
THE GENUS OF SUBFIELDS OF $K(n)$

intersection of the kernel of g and the image of $f \circ i = 1$. But $|G(m)| = p^s \phi(p^s) = |\text{SL}(2, p^s)|$ so that the map is onto. Hence $\text{SL}(2, p^s) \cong G(m)$.

Proposition 2. Suppose $F \subseteq K(m)K(p^s)$ with $(m, p) = 1$, p the largest prime dividing n and $p > p_r$. If $g(F) \leq g$, then $F \subseteq K(m)$.

Proof. Let $H = G(K(n)/F)$ so that $H \subseteq \text{LF}(2, m) \times \text{LF}(2, p^s)$.

N_2, the projection of H onto $\text{LF}(2, p^s)$, is $G(K(p^s)/F \cap K(p^s))$. But $g(F \cap K(p^s)) \leq g(F)$ and so by the assumption on p, $F \cap K(p^s) = C(j)$. Therefore $N_2 = \text{LF}(2, p^s)$. f_{t_2} is normal in N_2 and, since $p > 3$, $f_{t_2} = K_{t_2}$ for some t. Therefore $N_2/f_{t_2} \cong \text{LF}(2, p^4)$ and so p divides $|N_2/f_{t_2}|$. But $N_2/f_{t_2} \cong N_1/f_{t_1}$ so that p divides $|N_1|$. But $N_1 \subseteq \text{LF}(2, m)$ and $p \nmid |\text{LF}(2, m)|$. So $N_2 = f_{t_2}$ and $N_1 = f_{t_1}$. So $H = N_1 \times \text{LF}(2, p^s)$ and by Galois theory, $F \subseteq K(m)$.

Proposition 3. Suppose $F \subseteq K(mp^s)$ with $(m, p) = 1$, p the largest prime dividing n and $p > p_r$. If $g(F) = g$, then $F \subseteq K(m)K(p^s)$.

Proof. Let $H = G(K(n)/F)$. If $c \in H$, we are done. So suppose $H \cap (c) = 1$. $H \cdot (c) = G(K(n)/F \cap K(m)K(p^s))$. By Proposition 2, $F \cap K(m)K(p^s) \subseteq K(m)$ since $g(F \cap K(m)K(p^s)) \leq g(F)$. So $G(m) \subseteq H \cdot (c)$. So $G(m) = G(m) \cap (H \cup cH) = (G(m) \cap H) \cup c \cdot (G(m) \cap H)$ since $c \in G(m)$. Therefore $G(m) \cap H$ is a normal subgroup of index 2 in $G(m)$. But by Lemma 2, $G(m) \cong \text{SL}(2, p^s)$ which has no subgroups of index 2 for $p > 3$ [7]. So $H \cap (c) \neq 1$.

Theorem 1. If F has genus g, then $F \subseteq K(p_1^{x_1} \cdots p_r^{x_r})$ for some $x_i, 1 \leq i \leq r$.

Proof. Suppose $F \subseteq K(n)$ and p is the largest prime not in $\{p_1, \ldots, p_r\}$ which divides n. Write $n = mp^s$ with $(m, p) = 1$. Then by Proposition 3, $F \subseteq K(m)K(p^s)$ and then by Proposition 2, $F \subseteq K(m)$. Repeating the argument, one has, after a finite number of steps, $F \subseteq K(m)$ with p_1, \ldots, p_r the only primes dividing m.

For $1 \leq i \leq r$, let e_i be the smallest power of p_i such that any field $\nsubseteq C(j)$ of genus $\leq g$ which is contained in $K(p_i^{x_i})$ for some x_i is actually contained in $K(p_i^{x_i})$ [3]. Suppose $p_i^{d_i} | \Pi_{j=i+1}^r (p_j^2 - 1)$. Since $K(p_i^{x_i}) \subseteq K(p_i^{x_i+1})$, we may assume in the following that, for all $i, x_i > e_i + d_i$.

Proposition 4. Suppose $F \subseteq \Pi_{i=1}^r K(p_i^{x_i})$ with $x_i > e_i + d_i$ and $g(F) \leq g$. Then

$$F \subseteq K(p_1^{e_1+d_1}) \cdot K(p_2^{e_2+d_2+1}) \cdot \cdots \cdot K(p_r^{e_r+d_r})$$

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Proof. The proof is by induction on the number of primes. Suppose

\[F \subseteq K(p_r^{x_r-1}) \cdot K(p_r^{x_r}) \quad \text{and} \quad H = G(K(p_r^{x_r-1}) \cdot K(p_r^{x_r})/F) \]

so that \(H \subseteq LF(2, p_r^{x_r-1}) \times LF(2, p_r^{x_r}) \). Then, since

\[N_2 = G(K(p_r^{x_r})/F \cap K(p_r^{x_r})) \quad \text{and} \quad (F \cap K(p_r^{x_r})) \subseteq K(p_r^{x_r}) \]

\(N_2 \supseteq K^{x_r} \). There is an \(H' \subseteq H \) such that \(N_2 = K^{x_r} \). Then \(|N_2'/t_2'| \) divides \(p_r^{y} \) but \(p_r \nmid |N_2'| \) since \(N_1' \subseteq LF(2, p_r^{x-r-1}) \). So \(N_2' = f_{t_2}' = K^{x_r} \). But \(f_{t_2} \supseteq f_{t_2}' \) so that \(I \times K_r^{x_r} \subseteq H \) and \(F \subseteq K(p_r^{x_r-1}) \cdot K(p_r^{x_r}) = L_1 \). Similarly

\[N_1 = G(K(p_r^{x_r-1})/F \cap K(p_r^{x_r-1})) \quad \text{and} \quad K^{x_r-1} \subseteq N_1. \]

There is an \(H' \subseteq H \) such that \(N_1 = K^{x_r-1} \). \(|N_1'/f_{t_1}'| = p_r^{y} \) and \(N_1'/f_{t_1}' \approx N_2'/f_{t_2}' \). So \(p_r^{y} \mid p_r^{2} - 1 \) and \(y \leq d_{r-1} \). Let \(f_{t_1}' = p_r^{y} \). Then \((3x_{r-1} - 3e_{r-1}) - z = y < d_{r-1} \), i.e.

\[z > (3x_{r-1} - 3e_{r-1}) - d_{r-1} = (2x_{r-1} - 2e_{r-1}) + ((x_{r-1} - e_{r-1}) - d_{r-1}) \]

and so, by the corollary to Lemma 1, \(f_{t_1}' \supseteq K^{x_r-1}+d_{r-1} \). So

\[K^{x_r-1}+d_{r-1} \times I \subseteq H \quad \text{and} \quad F \subseteq K(p_r^{x_r-1}+d_{r-1}) \cdot K(p_r^{x_r}) = L_2. \]

Then \(F \subseteq L_1 \cap L_2 \) which by fact (5) equals \(K(p_r^{x_r-1}+d_{r-1}) \cdot K(p_r^{x_r}) \).

Now suppose

\[F \subseteq K(p_t^{x_t}) \cdot \prod_{i=t+1}^{r} K(p_i^{x_i}) \quad \text{and} \quad F \cap \prod_{i=t+1}^{r} K(p_i^{x_i}) \subseteq \prod_{i=t+1}^{r} K(p_i^{x_i+d}) \]

and

\[H = G\left(\prod_{i=t}^{r} K(p_i^{x_i})/F \right). \]

Then \(N_2 \supseteq \prod_{i=t+1}^{r} K^{x_i+d_i} \) and so there is an \(H' \subseteq H \) such that \(N_2' = \prod_{i=t+1}^{r} K^{x_i+d_i} \). Then \(N_2'/f_{t_2}' \approx N_1'/f_{t_1}' \), \(|N_2'/f_{t_2}'| \) divides \(\prod_{i=t+1}^{r} p_r^{y_i} \) and, if \(p_{t+1} \neq 3 \), no \(p_i \) divides \(|N_1'| \). So

\[N_2' = f_{t_2}' \quad \text{and} \quad f_{t_2} \supseteq f_{t_2}' = \prod_{i=t+1}^{r} K^{x_i+d_i}. \]

So

\[F \subseteq K(p_t^{x_t}) \cdot \left(\prod_{i=t+1}^{r} K(p_i^{x_i+d_i}) \right) = L_1. \]

If \(p_{t+1} = 3 \), then it is possible that \(p_{t+1} \parallel |N_1'| \) in which case, arguing as
in the 2nd part of the first step of the induction, one gets
\[F \subseteq K(p^x_t)^t \cdot K(p^{x_t+1+d+x_t+1}) \cdot \prod_{i=t+2}^r K(p_i^{e_i+d_i}) = L_1. \]

Similarly \(K_{i=1}^t \subseteq N_1 \) and so there is an \(H' \subseteq H \) such that \(N_1' = K_{i=1}^t \). Let \(|N'_1|/|t_1'| = p^{y_1}_t \) and \(|t_1'| = p^{x_1}_t \). Then, as before, \(z > (2x_t - 2e_t) + (x_t - e_t) - d_t \) and so \(t_1' \geq K_{i=1}^t \). Therefore
\[F \subseteq K(p^x_t)^t \cdot \left(\prod_{i=t+1}^r K(p_i^{x_i}) \right) = L_2. \]

Again \(F \subseteq L_1 \cap L_2 \) which equals \(\prod_{i=t+1}^r K(p_i^{e_i+d_i}) \) unless \(p_{t+1} = 3 \) in which case \(e_{t+1} + d_{t+1} \) has to be replaced by \(e_{t+1} + d_{t+1} + 1 \).

Let \(n = \prod_{i=1}^r p_i^{x_i}, L = \prod_{i=1}^r K(p_i^{x_i}) \) and \(A = G(K(\mathfrak{n})) / K(p_1^{x_1} p_2^{t_2} \cdots p_r^{t_r}) \)
where \(t_2 = e_2 + d_2 + 1 \) and \(t_i = e_i + d_i, i \neq 2 \).

Proposition 5. If \(F \subseteq K(n) \) and \(g(F) = g \), then \(F \subseteq K(p_1^{x_1} p_2^{t_2} \cdots p_r^{t_r}). \)

Proof. Let
\[c_i = \pm \left(\begin{array}{cc} a_i & 0 \\ 0 & a_i \end{array} \right), \quad a_i \equiv 1 \pmod{\prod_{j=1; j \neq i}^r p_j^{x_j}}, \quad a_i \equiv -1 \pmod{p_i^{x_i}}, \]
be the nontrivial element in the kernel of the homomorphism from \(LF(2, n) \) to \(LF(2, p_i^{x_i}) \times LF(2, \prod_{j=1; j \neq i}^r p_j^{x_j}) \). Then \(C \), the group generated by the \(c_i \), \(1 \leq i \leq r \), equals \(G(K(\mathfrak{n}))/L) \), is contained in the center of \(LF(2, n) \) and has order \(2^{r-1} \). \(G(K(\mathfrak{n}))/F \cap L) = C \cdot H \) and \([CH: H] = 2^s, 0 \leq s \leq r - 1 \). By Proposition 4, \(F \cap L \subseteq K(p_1^{x_1}) \cdot \prod_{i=2}^r K(p_i^{x_i}) \) and so
\[F \cap L \subseteq F \cap K(p_1^{x_1} p_2^{t_2} \cdots p_r^{t_r}). \]

Therefore
\[G(K(\mathfrak{n}))/K(p_1^{x_1} p_2^{t_2} \cdots p_r^{t_r}) \cap F) = A \cdot H \subseteq C \cdot H. \]

So we have \(H \subseteq A \cdot H \subseteq C \cdot H \) and \(H \) is normal in \(C \cdot H \) since \(C \) is in the center of \(LF(2, n) \). So \(H \) is normal in \(AH \) and \(AH/H \cong A/H \cap A \). So \(H \cap A \) is a normal subgroup of \(A \) of index \(2^t, 0 \leq t \leq s \). But \(|A| = \prod_{i=1}^{r-2} p_i^{3(x_i-t_i)} \) which is odd. So \(A \cap H = A \) or \(A \subseteq H \). Therefore \(F \subseteq K(p_1^{x_1} p_2^{t_2} \cdots p_r^{t_r}). \)

Proposition 6. Suppose \(F \subseteq K(n) \) with \(n = 2^x m, (2, m) = 1 \) and \(g(F) = g \). Then \(F \subseteq K(2^{t+1} m) \) where \(t = e_1 + d_1 \).

Proof. As before.
C = G(K(n)/K(2^x) \cdot K(m)) \quad \text{and} \quad A = G(K(n)/K(2^t m)).

|C| = 2. F \cap K(2^x)K(m) \subseteq K(2^t K(m)) \text{ and so } F \cap K(2^x) \cdot K(m) \subseteq F \cap K(2^t m). \text{ Therefore } H \subseteq A H \subseteq C H. \text{ Since } [C H : H] \leq 2, \text{ there are 2 possibilities. If } H = C \cdot H, \text{ then } H = A \cdot H, A \subseteq H \text{ and so } F \subseteq K(2^t m). \text{ If } [C H : H] = 2 \text{ and } H = A H, \text{ again } A \subseteq H \text{ and we are done. So assume } [A H : H] = 2. \text{ Then since } A H / H \cong A / H \cap A, H \cap A \text{ is a normal subgroup of index 2 in } A. \text{ Let }

A' = G(K(2^x) \cdot K(m)/K(2^t K(m))

and let } \phi: A \to A' \text{ be the homomorphism obtained by restricting an automorphism } \sigma \text{ to } K(2^x) \cdot K(m). \phi \text{ is an isomorphism and so } \phi(H \cap A) \text{ has index 2 in } A'. \text{ But } A' = K^x \text{ and so }

\phi(H \cap A) \supseteq K^x_{t+1} = G(K(2^x) \cdot K(m)/K(2^t+1) \cdot K(m)).

Therefore

G(K(n)/K(2^{t+1} m)) \subseteq H \cap A \subseteq H \text{ and } F \subseteq K(2^{t+1} m).

Theorem 2. If } F \subseteq K(p_1^{x_1} \cdots p_r^{x_r}) \text{ has } g(F) = g, \text{ then
\begin{equation}
F \subseteq K(p_1^{e_1+d_1+1} \cdot p_2^{e_2+d_2+1} \cdot p_3^{e_3+d_3} \cdots p_r^{e_r+d_r}).
\end{equation}

Proof. Apply Propositions 5 and 6.

Combining Theorems 1 and 2, we obtain

Theorem 3. Suppose } F \subseteq K(n) \text{ for some } n \text{ and } g(F) = g. \text{ Then (\star) holds.

BIBLIOGRAPHY

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CONNECTICUT, STORRS, CONNECTICUT 06268