Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The genus of subfields of $ K(n)$


Author: Joseph B. Dennin
Journal: Proc. Amer. Math. Soc. 51 (1975), 282-288
MSC: Primary 10D05
DOI: https://doi.org/10.1090/S0002-9939-1975-0384698-8
MathSciNet review: 0384698
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we fix a genus $ g$ and show that the number of fields of elliptic modular functions $ F$ of genus $ g$ is finite.


References [Enhancements On Off] (What's this?)

  • [1] J. Dennin, Fields of modular functions of genus 0, Illinois J. Math. 15 (1971), 442-455. MR 46 #3638. MR 0304503 (46:3638)
  • [2] -, Subfields of $ K({2^n})$ of genus 0, Illinois J. Math. 16 (1972), 502-518. MR 46 #5473. MR 0306347 (46:5473)
  • [3] -, The genus of subfields of $ K({p^n})$, Illinois J. Math. 18 (1974), 246-264. MR 0342466 (49:7212)
  • [4] J. Gierster, Über die Galois'sche Gruppe Modulargleichungen, wenn der Transformations grad Potenz einer Primzahl $ > 2$ ist, Math. Ann. 26 (1886), 309-368. MR 1510350
  • [5] M. I. Knopp and M. Newman, Congruence subgroups of positive genus of the modular group, Illinois J. Math. 9 (1965), 577-583. MR 31 #5902. MR 0181675 (31:5902)
  • [6] S. Lang, Algebra, Addison-Wesley, Reading, Mass., 1965. MR 33 #5416. MR 0197234 (33:5416)
  • [7] D. L. McQuillan, Classification of normal congruence subgroups of the modular group, Amer. J. Math. 87 (1965), 285-296. MR 32 #2484. MR 0185014 (32:2484)
  • [8] -, On the genus of fields of elliptic modular functions, Illinois J. Math. 10 (1966), 479-487. MR 34 #1402. MR 0201520 (34:1402)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 10D05

Retrieve articles in all journals with MSC: 10D05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0384698-8
Keywords: Fields of elliptic modular functions, genus, modular group
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society