Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Some Baire spaces for which Blumberg's theorem does not hold


Author: H. E. White
Journal: Proc. Amer. Math. Soc. 51 (1975), 477-482
MSC: Primary 54E99; Secondary 54C30
DOI: https://doi.org/10.1090/S0002-9939-1975-0410691-2
MathSciNet review: 0410691
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: First, in the second section, we describe a class of Baire spaces for which Blumberg's theorem does not hold. Then, in the third section, we discuss Blumberg's theorem for $ P$-spaces.


References [Enhancements On Off] (What's this?)

  • [1] J. M. Aarts, J. de Groot and R. H. McDowell, Cotopology for metrizable spaces, Duke Math. J. 37 (1970), 291-295. MR 41 #4488. MR 0259859 (41:4488)
  • [2] J. C. Bradford and C. Goffman, Metric spaces in which Blumberg's theorem holds, Proc. Amer. Math. Soc. 11 (1960), 667-670. MR 26 #3832. MR 0146310 (26:3832)
  • [3] G. Choquet, Lectures on analysis. I: Integration and topological vector spaces, Benjamin, New York, 1969. MR 40 #3252; 44-1630.
  • [4] W. W. Comfort and Anthony W. Haget, Estimates for the number of real-valued continuous functions, Trans. Amer. Math. Soc. 150 (1970), 619-631. MR 41 #7621. MR 0263016 (41:7621)
  • [5] W. W. Comfort and S. Negrepontis, $ \beta N\backslash N$, Math. Z. 107 (1968), 53-58. MR 38 #2739. MR 0234422 (38:2739)
  • [6] R. Engelking, Outline of general topology, PWN, Warsaw, 1965; English transl., North-Holland, Amsterdam; Interscience, New York, 1968. MR 36 #4508; 37 #5836. MR 0230273 (37:5836)
  • [7] L. Gillman and M. Jerison, Rings of continuous functions, University Ser. in Higher Math., Van Nostrand, Princeton, N. J., 1960. MR 22 #6994. MR 0116199 (22:6994)
  • [8] C. Goffman, Real functions, Rinehart, New York, 1953. MR 14, 855. MR 0054006 (14:855e)
  • [9] P. R. Halmos, Measure theory, Van Nostrand, Princeton, N. J., 1950. MR 11, 504. MR 0033869 (11:504d)
  • [10] J. L. Kelley, Measures on Boolean algebras, Pacific J. Math. 9 (1959), 1165-1177. MR 21 #7286. MR 0108570 (21:7286)
  • [11] J. C. Oxtoby, Cartesian products of Baire spaces, Fund. Math. 49 (1960/61), 157-166. MR 25 #4055; 26-1543. MR 0140638 (25:4055)
  • [12] -, Spaces that admit a category measure, J. Reine Angew. Math. 205 (1960/61), pp. 156-170. MR 25 #4054; 26-1543. MR 0140637 (25:4054)
  • [13] R. Levy, A totally ordered Baire space for which Blumberg's theorem fails, Proc. Amer. Math. Soc. 41 (1973), 304; Erratum 45 (1974), 469.
  • [14] -, Strongly non-Blumberg spaces (to appear).
  • [15] H. E. White, Jr., Topological spaces in which Blumberg's theorem holds, Proc. Amer. Math. Soc. 44 (1974), 454-462. MR 0341379 (49:6130)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54E99, 54C30

Retrieve articles in all journals with MSC: 54E99, 54C30


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0410691-2
Keywords: Baire space, Blumberg's theorem
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society