APPROXIMATING ZEROS OF ACCRETIVE OPERATORS

SIMEON REICH

ABSTRACT. Let A be an m-accretive set in a reflexive Banach space E with a Gateaux differentiable norm. For positive r let J_r denote the resolvent of A. If the duality mapping of E is weakly sequentially continuous and 0 is in the range of A, then for each x in E the strong $\lim_{r \to \infty} J_r x$ exists and belongs to $A^{-1}(0)$. This is an extension to a Banach space setting of a result previously known only for Hilbert space.

Let H be a real Hilbert space and $U \subseteq H \times H$ a maximal monotone operator. For each positive r there is a unique y_r in H such that $0 \in y_r + rU(y_r)$. It is known [4] that if 0 belongs to the range of U, then the strong $\lim_{r \to \infty} y_r$ exists and is the point of $U^{-1}(0)$ closest to 0. It is our purpose in this note to extend this result to accretive operators in certain Banach spaces. According to [4], this leads to the possibility of calculating a zero of the given operator as the limit of an iteratively constructed sequence. Our method of proof is not a direct generalization of the Hilbert space proof. It works, however, only in a restricted class of Banach spaces. The question of whether our theorem is valid in other Banach spaces remains open.

Let E^* denote the dual of a real Banach space E. The duality mapping J from E into the family of nonempty subsets of E^* is defined by

$$J(x) = \{x^* \in E^*: (x, x^*) = \|x\|^2 \text{ and } \|x^*\| = \|x\|\}.$$

J is single-valued if and only if the norm of E is Gateaux differentiable. If A is a subset of $E \times E$ and $x \in E$, we define

$$Ax = \{y \in E: [x, y] \in A\}$$

and set

$$D(A) = \{x \in E: Ax \neq \emptyset\}.$$

The range of A is defined by

$$R(A) = \bigcup\{Ax: x \in D(A)\}.$$

Received by the editors October 1, 1974.

AMS (MOS) subject classifications (1970). Primary 47H15, 47H05; Secondary 47B44, 40A05.

Key words and phrases. Accretive, duality mapping, nonexpansive retract, strong and weak convergence.
and its inverse by

\[A^{-1}y = \{x \in E : y \in Ax \}. \]

I will stand for the identity operator on \(E \). The closure of a subset \(D \) of \(E \) will be denoted by \(\text{cl}(D) \). A mapping \(T : D \to E \) is said to be nonexpansive if \(\|Tx - Ty\| \leq \|x - y\| \) for all \(x \) and \(y \) in \(D \). In the sequel, \(\to \) and \(\rightharpoonup \) will denote strong and weak convergence respectively.

A subset \(A \) of \(E \times E \) is called accretive [7] if for all \(x_i \in D(A) \) and \(y_i \in Ax_i, \ i = 1, 2, \) there exists \(j \in J(x_1 - x_2) \) such that \(\langle y_1 - y_2, j \rangle \geq 0 \).

Let \(D \) be a subset of \(E \) and \(A \) an accretive set (= accretive operator) with \(D(A) \subseteq D \). \(A \) is said to be maximal accretive in \(D \) if there is no proper accretive extension \(B \) of \(A \) with \(D(B) \subseteq D \). An accretive set \(A \) is maximal accretive if it is maximal accretive in \(E \). It is \(m \)-accretive if \(R(I + A) = E \). (It follows that \(R(I + rA) = E \) for all positive \(r \).) If \(T : E \to E \) is nonexpansive, then \(I - T \) is \(m \)-accretive. If \(A \) is \(m \)-accretive, then it is maximal accretive, but the converse is not true in general. If \(A \) is accretive one can define, for each \(r > 0 \), a nonexpansive single-valued mapping \(J_r : R(I + rA) \to D(A) \) by \(J_r = (I + rA)^{-1} \). It is called the resolvent of \(A \). Conditions which imply that an \(m \)-accretive set is surjective can be found in [10].

The duality mapping \(J \) of a Banach space \(E \) with a Gâteaux differentiable norm [5] is said to be weakly sequentially continuous if \(x_n \to x \) in \(E \) implies that \(\{J(x_n)\} \) converges weak star to \(J(x) \) in \(E^* \). This happens, for example, if \(E \) is a Hilbert space, or finite-dimensional and smooth, or \(l_p, 1 < p < \infty \). This property of Banach spaces was introduced by Browder [1]. More information can be found in [6].

Lemma. Let \(A \) be a maximal accretive set in a Banach space \(E \) whose norm is Gâteaux differentiable. Let \(x_n \in D(A) \), \(y_n \in Ax_n \), \(x_n \to x \), and \(y_n \to y \). If the duality mapping \(J \) is weakly sequentially continuous, then \([x, y] \in A\).

Proof. Let \(z \in D(A) \) and \(w \in Az \). We have

\[
|\langle y_n - w, J(x_n - z) \rangle - (y - w, J(x - z))| \\
\leq |\langle y_n - y, J(x_n - z) \rangle| + |\langle y - w, J(x_n - z) - J(x - z) \rangle| \\
\leq \|y_n - y\| \|x_n - z\| + |\langle y - w, J(x_n - z) - J(x - z) \rangle|.
\]

Thus

\[
(y - w, J(x - z)) = \lim_{n \to \infty} (y_n - w, J(x_n - z)) \geq 0.
\]

The result follows.
A closed subset C of a Banach space E is called a nonexpansive retract of E if there exists a retraction of E onto C which is a nonexpansive mapping. A retraction $P: E \to C$ is called a sunny retraction if $P(x) = v$ implies that $P(v + r(x - v)) = v$ for all $x \in E$ and $r \geq 0$. (We prefer this term to the one used by Brück [3] because suns already occur in approximation theory.) If there exists a retraction $P: E \to C$ which is both sunny and nonexpansive, then C is said to be a sunny nonexpansive retract of E. If C is a sunny nonexpansive retract of a Banach space whose norm is Gâteaux differentiable, then the sunny nonexpansive retraction on C is unique [3, Theorem 1], [8, Lemma 2.7]. The metric projection on a closed and convex subset of a Hilbert space is both sunny and nonexpansive.

Theorem. Let A be an m-accretive set in a reflexive Banach space E with a Gâteaux differentiable norm. If the duality mapping J of E is weakly sequentially continuous and $0 \in R(A)$, then for each x in E the strong $\lim_{r \to \infty} J_{\frac{x}{r}}$ exists and belongs to $A^{-1}(0)$.

Proof. Let the positive sequence $\{r_n : n = 1, 2, \ldots \}$ tend to infinity. Let $x \in E$ and $y \in A^{-1}(0)$. Set $x_n = J_{r_n} x$. We have $(x_n - x, J(y - x_n)) \geq 0$ because $(x - x_n)/r_n$ belongs to Ax_n and $0 \in Ay$. Consequently,

$$\|y - x_n\|^2 \leq (y - x, J(y - x_n)) \leq \|y - x\| \|y - x_n\|$$

and $\{x_n\}$ is bounded. Let Px be the weak limit of a subsequence $\{x_k\}$ of $\{x_n\}$. Clearly $(x - x_k)/r_k \to 0$. By the Lemma, $[Px, 0]$ belongs to A. Therefore

$$\|Px - x_k\|^2 \leq (Px - x, J(Px - x_k)) \to 0.$$

Thus $\{x_k\}$ converges strongly to Px. It follows that $(Px - x, J(y - Px)) \geq 0$ for all x in E and y in $A^{-1}(0)$. In other words [8, Lemma 2.7], $P: E \to A^{-1}(0)$ is both sunny and nonexpansive. Since P is necessarily unique, the sequence $\{x_n\}$ itself converges strongly to Px. This completes the proof.

Corollary (cf. [8, Theorem 3.2]). Let T be a nonexpansive self-mapping of E, a reflexive Banach space with a Gâteaux differentiable norm. Suppose that T has a nonempty fixed point set and that E has a weakly sequentially continuous duality mapping. Let x belong to E. For each $0 < k < 1$ let x_k satisfy $x_k = kTx_k + (1 - k)x$. Then the strong $\lim_{k \to 1} x_k$ exists and is a fixed point of T.

In the course of the proof of the Theorem it has been established that $A^{-1}(0)$ is a nonexpansive retract of E. Since $A^{-1}(0)$ is the fixed point set
of the nonexpansive mapping \(J_r \) (for all \(r > 0 \)), this is also a consequence of [2, Theorem 2]. In a similar setting, \(c_1(D(A)) \) is also a nonexpansive retract of \(E \) [9, Theorem 3.7].

Remark. A version of the Theorem is true for a certain class of accretive operators which are not necessarily \(m \)-accretive.

Acknowledgement. I am grateful to Professor Ronald E. Bruck, Jr. for kindly providing me with a preprint of [4].

REFERENCES