ENTIRENESS OF THE ENDOMORPHISM RINGS OF ONE-DIMENSIONAL FORMAL GROUPS

JONATHAN LUBIN

ABSTRACT. If, for a one-dimensional formal group of height \(h \) which is defined over the integers in a local field of characteristic zero, all the coefficients in degree less than \(p^h \) lie in an unramified extension of the \(p \)-adic numbers, then the endomorphism ring of the formal group is integrally closed.

In this note, \(\mathbb{Q}_p \) and \(\mathbb{Z}_p \) denote the field of \(p \)-adic numbers and the ring of \(p \)-adic integers, respectively; \(K \) and \(B \) denote a finite field extension of \(\mathbb{Q}_p \) and the integral closure of \(\mathbb{Z}_p \) in \(K \), respectively; \(\overline{K} \) will be a fixed algebraic closure of \(K \), and \(v \) the unique extension to \(\overline{K} \) of the (additive) \(p \)-adic valuation on \(\mathbb{Q}_p \), normalized so that \(v(p) = 1 \); and finally, \(M \) will be the maximal ideal in the integral closure of \(B \) in \(\overline{K} \), or, equivalently, the set of all elements \(z \) of \(\overline{K} \) for which \(v(z) > 0 \). All formal groups considered will be commutative and one dimensional.

In [3] the following proposition appeared:

Theorem 3.3.1. If \(F \) is a one-dimensional formal group defined over \(B \), of height \(h < \infty \), and if the coefficients of \(F \) in terms of total degree less than \(p^h \) all lie in an unramified extension of \(\mathbb{Q}_p \), then \(\text{End}_B(F) \) is integrally closed in its fraction-field.

It was soon pointed out to me by A. Fröhlich and A. Trojan that the proof in [3] was incorrect. Later [4] I proved the weaker result that if \(F \) itself is defined over an unramified extension of \(\mathbb{Q}_p \), then \(\text{End}_B(F) \) is integrally closed. That proof made essential use of the fact [4, Theorem 1.5] that if \(F, G, \) and \(H \) are formal groups defined over \(B \), with \(f \in \text{Hom}_B(F, G) \) and \(g \in \text{Hom}_B(F, H) \) such that \(\text{ker}(f) \subseteq \text{ker}(g) \), then there is some \(h \in \text{Hom}_B(G, H) \) for which \(h \circ f = g \). In this note I will use that fact together with the theory of the Newton polygon of a power series, as described for instance in [2], to show that Theorem 3.3.1 of [3] is correct as stated there.

The proofs below are for the category of formal groups, i.e., formal \(\mathbb{Z}_p \)-modules; the generalization, in the spirit of [5] or [1], to the category of
formal A-modules, for A the ring of integers in a finite field extension of \mathbb{Q}_p, is a comparatively easy exercise.

Now let F be a fixed one-dimensional formal group defined over B, and of finite height h, with the property that all its coefficients in terms of total degree less than p^h lie in an unramified extension of \mathbb{Q}_p. Then according to Lemma 3.2.2 of [3], F is B-isomorphic to a formal group which is linear modulo degree p^h. We may assume from now on that F itself has this shape. It is a consequence of this, since B is of characteristic zero, that any endomorphism of F is also linear modulo degree p^h.

The points of finite order of F, in M, form a group W which is the disjoint union of $\{0\}$ with all the sets $X_m = \ker([p^m]_F) - \ker([p^{m-1}]_F)$, $m \geq 1$. We can now use the theory of the Newton polygon to show that if $w \in X_m$, then $v(w) = (p^h - 1)^{-1}(1 - m)$. Indeed, since $[p]_F(x) = px + w[p]_F(x) \mod(x^h + 1)$, for some unit u of B, the Newton polygon of $[p]_F(x)$ has its first vertex at $(1, 1)$ and its next vertex at $(p^h, 0)$, so that the nonzero roots w of $[p]_F$ in M have $v(w) = 1/(p^h - 1)$. Inductively, if all elements y of X_{m-1} have $v(y) = (p^h - 1)^{-1}(2 - m)$, we use the fact that any w in X_m is a root of $-y + [p]_F(x)$ for some such y; the Newton polygon of this power series has no vertices between $(0, v(y))$ and $(p^h, 0)$. The slope of this segment of the polygon is $-v(y)/p^h$, and this is the only segment of the polygon with negative slope. Thus $v(w) = v(y)/p^h$, completing the induction.

Now let $/B$ be a B-endomorphism of F. It will turn out that if $/B$ is not an automorphism, there is some $g \in \text{End}_B(F)$ such that $/ = [p]_F \circ g$: in other words, $\text{End}_B(F)$ is a discrete valuation ring with prime element $[p]_F$, and hence certainly integrally closed in its fraction field.

Suppose now that the B-endomorphism $/B$ of F is not an automorphism, and not zero. Then $\ker(f) \neq \{0\}$, and in fact $\{0\} \neq \ker([p]_F) \cap \ker(f)$, since all elements of $\ker(f)$ are annihilated by some power of p. The fact that f has some nonzero roots in M implies that the first segment of the Newton polygon is not horizontal; the fact that $/B$ is linear modulo (x^h) implies that the right-hand endpoint of this segment has abscissa at least p^h. Nonzero elements of W with greatest v-value are just the elements of X_1. So since $/B$ has some roots in X_1, and at least $p^h - 1$ nonzero roots of greatest v-value, it follows that $/B$ has $p^h - 1$ roots in X_1: we have $\ker([p]_F) \subset \ker(f)$. This completes the proof.

REFERENCES

3. Jonathan Lubin, One-parameter formal Lie groups over p-adic integer rings,

DEPARTMENT OF MATHEMATICS, BROWN UNIVERSITY, PROVIDENCE, RHODE ISLAND 02912