CODIMENSION OF COMPACT M-SEMILATTICES

J. W. LEA, JR. AND A. Y. W. LAU

ABSTRACT. This paper is a generalization of [5] and gives a partial answer to Question 31 in [1], i.e., if S is a compact M-semilattice of finite codimension and $x \neq y$, then there exists a closed subsemilattice A of S such that A separates x and y in S and $\text{cd } A < \text{cd } S$.

A topological semilattice is a Hausdorff space with an associative continuous operation which is commutative and idempotent. We denote

$$M(x) = \{y \in S \mid x \leq y\}, \quad L(x) = \{y \in S \mid y \leq x\}, \quad [x, y] = M(x) \cap L(y),$$

and $F(A)$ the boundary of A in S. The breadth of S (Br S) is the smallest integer n such that any finite subset F of S contains a subset G of at most n elements such that $\inf F = \inf G$. The codimension of S is the smallest integer n such that $i^*: H^n(S) \rightarrow H^n(A)$ is onto for each closed subset A and inclusion i.

I. Lemma 1.1. If S is a topological semilattice and $a \in S$, then $F(M(a))$ is an ideal of $M(a)$ if $F(M(a)) \neq \emptyset$.

Proof. Let $p \in F(M(a))$ and $q \in M(a)$. Suppose pq belongs to the interior of $M(a)$. Then there exists an open set U of p such that $Uq \subseteq M(a)$. For each $z \in U$, $zq \in M(a)$ implies $z \in M(a)$. Hence $p \in U$ which is contained in $M(a)$, contrary to $p \in F(M(a))$.

A topological semilattice S is said to be an M-semilattice if $M(x)$ is connected for each $x \in S$.

Lemma 1.2. If S is an M-semilattice, then $F(M(a))$ is an M-semilattice if nonempty.

Proof. Let $x, y \in F(M(a))$ and $x < y$. Then $M(x)$ is connected. Since $F(M(a))$ is an ideal of $M(a)$, then $yM(x) \subseteq F(M(a)) \cap L(y) \cap M(x)$ and also $yM(x)$ contains x and y.

Lemma 1.3. If S is a compact M-semilattice, then S is locally connected.

Proof. Let $x \in W$ and W be open in S. We can assume W convex since S is a compact partially ordered space. Let $x \in V$ and V open in S and $V^2 \subseteq W$. For all $p, q \in V$, $pq \in V^2$. Then there exist arc-chains A and B from pq to p and pq to q respectively. Since W is convex, then A and B are...
are contained in \(W \). Hence \(S \) is connected in kleinem at each \(x \in S \); \(S \) is locally connected.

Theorem 1. If \(S \) is a compact \(M \)-semilattice, then \(F(M(a)) \) is a compact connected locally connected semilattice and if \(S \) has finite codimension, then \(S \) has a basis of closed neighborhoods each of which is a subsemilattice.

Proof. Apply Lemma 1.3 and Theorem 3.4 of [2].

II. If \(S \) is a compact semilattice with identity, we can define

\[
a \lor b = \inf \{ x \mid a \leq x \text{ and } b \leq x \}
\]

which exists and is the least upper bound for \(a \) and \(b \).

Lemma 2.1. Let \(S \) be a compact semilattice and \(\{ x_\alpha \mid \alpha \in D \} \) is an increasing net in \(S \). Then \(x_\alpha \) converges to \(x \) if and only if \(x = \operatorname{lub} \{ x_\alpha \mid \alpha \in D \} \).

Proof. Suppose \(x_\alpha \) converges to \(x \). Let \(\beta \in D \). Then \(x_\beta x_\alpha \) converges to \(x_\beta x \). But \(x_\beta \leq x_\alpha \) residually. Hence \(x_\beta x = x_\beta \). Thus \(x_\beta \leq x \), i.e., \(\operatorname{lub} \{ x_\alpha \mid \alpha \in D \} \leq x \). Suppose \(x \notin \operatorname{lub} x_\alpha \). Then there are open sets \(x \in U \), \(\operatorname{lub} x_\alpha \in V \) such that \((U \times V) \cap \leq = \emptyset \). Choose any \(x_\beta \in U \). Then \(x_\beta \leq \operatorname{lub} x_\alpha \), a contradiction. Hence \(x = \operatorname{lub} x_\alpha \).

Suppose \(x = \operatorname{lub} x_\alpha \). Let \(x \in U \) open in \(S \). Suppose there exists a cofinal subset \(E \) of \(D \) such that \(\{ x_\alpha \mid \alpha \in E \} \cap U = \emptyset \). Then there exists a subnet \(\gamma_\beta \) of \(\{ x_\alpha \mid \alpha \in E \} \) such that \(\gamma_\beta \) converges to some \(y \notin U \). By the previous paragraph, \(y = \operatorname{lub} \gamma_\beta = \operatorname{lub} x_\alpha = x \). We have a contradiction.

Lemma 2.2. If \(S \) is a compact semilattice and \(x_\alpha \) is an increasing net converging to \(x \), then \(a \lor x_\alpha \) is an increasing net converging to \(a \lor x \).

Proof. Since \(a \lor x_\alpha \leq a \lor x \) for each \(\alpha \), then \(\operatorname{lub}(a \lor x_\alpha) \leq a \lor x \).

Also for each \(\alpha \), \(x_\alpha \leq a \lor x_\alpha \). Hence \(x \leq \operatorname{lub}(a \lor x_\alpha) \) which yields \(a \lor x \leq \operatorname{lub}(a \lor x_\alpha) \).

Lemma 2.3. If \(S \) is a compact \(M \)-semilattice with identity, then \(\operatorname{cd} S = \operatorname{Br} S \).

Proof. A generalization of Corollary 2.4 of [4].

Theorem 2. If \(S \) is a compact \(M \)-semilattice of positive codimension \(n \), then \(\operatorname{cd}(F(M(a))) < n \).

Proof. We first show that if \(a \neq x \in F(M(a)) \), then \(\operatorname{cd}[a, x] < n \). Choose a closed neighborhood \(V \) of \(x \) such that \(V \cap L(a) = \emptyset \) and \(V^2 = V \). Since \(x \in F(M(a)) \), then \(U \cap S \setminus M(a) \neq \emptyset \) for each open set \(U \) containing \(x \). Hence there is a net \(\{ x_\alpha \} \subseteq V \) such that \(x_\alpha \notin M(a) \) and \(x_\alpha \) converges to \(x \). Let \(y_\alpha = \inf \{ x_\beta \mid \alpha \leq \beta \} \). Then \(y_\alpha \in V \setminus M(a) \). If \(W \) is a closed neighborhood of \(x \)
and $W^2 = W$, then there exists α such that for each $\beta \geq \alpha$, $x_\beta \in W$. Then $\inf \{ x_\beta | \beta \geq \gamma \} \in W$ for all $\gamma \geq \alpha$. Hence y_α is an increasing net converging to x.

For each $\alpha \in D$, $[a, a \lor y_\alpha]$ has breadth less than n [6, Lemma 1.1] since $Br L(x) = cd L(x) \leq n$. Since $\{[a, a \lor y_\alpha]\}$ is a chain of subsemilattices, then

$$Br(\bigcup[a, a \lor y_\alpha]) = Br((\bigcup[a, a \lor y_\alpha])^*) < n,$$

where $*$ denotes closure in S. Since y_α converges to x, then $a \lor y_\alpha$ converges to $a \lor x$ and $(a \lor y_\alpha)M(a)$ converges to $(a \lor x)M(a)$ in terms of lim inf and lim sup. Since $[a, a \lor y_\alpha] = (a \lor y_\alpha)M(a)$ and $[a, x] = [a, a \lor x] = (a \lor x)M(a)$ and $[a, a \lor y_\alpha] \subseteq [a, a \lor x]$, then $[a, x] = (\bigcup[a, a \lor y_\alpha])^*$.

Thus $Br[a, a] < n$. Since $[a, x]$ is a compact M-semilattice with identity, then $cd[a, x] = Br[a, a] < n$.

Suppose $F(M(a)) \neq \emptyset$. Then by Theorem 1 and [3, Corollary 2], $F(M(a))$ has a point x such that $cd(F(M(a)) = cd(F(M(a)) \cap L(x))$. But

$$cd(F(M(a)) \cap L(x)) \leq cd[a, x] < n.$$

Theorem 3. If S is a compact M-semilattice and $x \neq y$, then there exists a closed subsemilattice A of S such that A separates x and y in S and $cd A < cd S$.

Proof. Suppose $x \neq y$. Then $x \not\leq y$ or $y \not\leq x$. Assume $x \not\leq y$. There exist open sets U, V containing x and y such that $(U \times V) \cap \leq = \emptyset$. Let K be a closed neighborhood of x contained in U and $K^2 = K$. Choose $a = \inf K$. Then x belongs to the interior of $M(a)$ and $y \not\in M(a)$. Hence $F(M(a))$ separates x and y. Also $cd F(M(a)) < cd S$ by Theorem 2.

REFERENCES

DEPARTMENT OF MATHEMATICS, MIDDLE TENNESSEE STATE UNIVERSITY, MURFREESBORO, TENNESSEE 37132