QUASI-NILPOTENT SETS IN SEMIGROUPS

H. L. CHOW

ABSTRACT. In a compact semigroup S with zero 0, a subset A of S is called quasi-nilpotent if the closed semigroup generated by A contains 0. A probability measure μ on S is called nilpotent if the sequence (μ^n) converges to the Dirac measure at 0. It is shown that a probability measure is nilpotent if and only if its support is quasi-nilpotent. Consequently, the set of all nilpotent measures on S is convex and everywhere dense in the set of all probability measures on S and the union of their supports is S.

In a topological semigroup with zero 0, an element x is termed nilpotent if $x^n \to 0$ as $n \to \infty$ [5]. This definition has an obvious extension to subsets of the semigroup, i.e. a subset A is nilpotent if $A^n \to 0$ as $n \to \infty$. Now we call a subset B of the semigroup quasi-nilpotent if the closed semigroup generated by B contains the zero 0. It is shown that, when the topological semigroup is compact, a singleton is nilpotent if and only if quasi-nilpotent. Then we investigate the set of probability measures on a compact semigroup and characterize a nilpotent probability measure as a measure with quasi-nilpotent support.

Let S be a topological semigroup with zero 0, and A a subset of S. Let $S(A)$ denote the semigroup generated by A, i.e. $S(A) = \bigcup_{n=1}^{\infty} A^n$. It is trivial that any subset containing 0 is quasi-nilpotent; in particular, the set $N(S)$ of nilpotent elements of S is quasi-nilpotent. From the semigroup S given in Example 6 below, in which $N(S) = \{0, 1\}$ and $N(S)^n = N(S)$ for all n [4, p. 56], we see that $N(S)$ is not nilpotent.

Theorem 1. Let A be a subset of S. Then (i) if $S(A) \cap N(S) \neq \emptyset$ (where the bar denotes closure), then A is quasi-nilpotent.

(ii) If A^n is quasi-nilpotent for some n, then A itself is quasi-nilpotent.

Proof. (i) Take $a \in S(A) \cap N(S)$. In view of the fact that $a^n \to 0$, we have $0 \in \overline{S(A)}$, i.e. A is quasi-nilpotent.

(ii) Since $S(A^n) \subset S(A)$ and $0 \in \overline{S(A^n)}$, it follows that $0 \in \overline{S(A)}$, and the theorem is proved.

We remark that, if A^n is nilpotent for some n, then A is also nilpotent, by a similar argument to that given in the proof of Lemma 2.1.4 of [4].

Received by the editors April 3, 1974 and, in revised form, July 15, 1974. AMS (MOS) subject classifications (1970). Primary 22A20, 43A05, 60B15; Secondary 22A15.

Key words and phrases. Quasi-nilpotent set, compact semigroup with zero, probability measure, support of a measure, nilpotent measure, nil semigroup.
Evidently a nilpotent set is quasi-nilpotent. As for the converse, which may not be true in general, we prove a special case in

Theorem 2. Suppose S is a compact semigroup with 0. Then $x \in S$ is nilpotent if and only if quasi-nilpotent.

Proof. It is enough to show that x is nilpotent if it is quasi-nilpotent. Recall that the minimal ideal $\overline{K(S(x))}$ of the compact semigroup $S(x)$ contains exactly all cluster points of the sequence $(x^n)_{n=1}^{\infty}$ (see, for example, [4, Theorem 3.1.1]). Now $\overline{K(S(x))} = \{0\}$ since $0 \in S(x)$. Thus the sequence (x^n) has a unique cluster point, whence $x^n \to 0$ as $n \to \infty$, completing the proof.

Remark. The preceding theorem does not hold for a compact semitopological semigroup (i.e. the multiplication is only separately continuous). For instance, take the compact monothetic semigroup $S(u)$ generated by u, with u defined in Example 2 of [1]; then the semigroup has zero 0 and identity 1 such that $u^{n!} \to 0$ and $u^n \to 1$. As a consequence, the element u is quasi-nilpotent but not nilpotent.

In what follows S will be a compact semigroup with zero 0. Denote by $P(S)$ the set of probability measures (i.e. normalized positive regular Borel measures) on S. For $\mu, \nu \in P(S)$, define convolution $\mu \ast \nu \in P(S)$ by

$$\int f(z) \, d(\mu \ast \nu)(z) = \iint f(xy) \, d\mu(x) \, d\nu(y)$$

for all continuous functions f on S, so that $P(S)$ forms a semigroup. If $P(S)$ is endowed with the weak* topology, i.e. a net (μ_n) in $P(S)$ converges to $\mu \in P(S)$ if $\int f(x) \, d\mu_n(x) \to \int f(x) \, d\mu(x)$ for continuous functions f on S, then $P(S)$ is a compact semigroup [3].

The support of $\mu \in P(S)$, supp μ, is the smallest closed set with μ-mass 1. It is well known [3, Lemma 2.1] that, for $\mu, \nu \in P(S)$, supp $(\mu \ast \nu) = $ \{supp $\mu \ast \nu$ \}.

Let Γ be a subset of $P(S)$ and define its support as the set supp $\Gamma = \bigcup_{\mu \in \Gamma}$ supp μ. It is easy to see that supp $(\Gamma_1 \Gamma_2) = $ \{supp $\Gamma_1 \ast \Gamma_2$ \} for $\Gamma_1 \subset P(S), \Gamma_2 \subset P(S)$.

Lemma 3. Let $\Gamma \subset P(S)$. Then supp $S(\Gamma) = \overline{S($supp Γ)}.$

Proof. That supp $S(\Gamma) = \overline{S($supp Γ)}$ follows from a result in [3, p. 55]. We assert that supp $S(\Gamma) = \overline{S($supp Γ)}$. Since $S(\Gamma) \supset \Gamma^n$ for $n = 1, 2, \ldots$, clearly supp $S(\Gamma) \supset \overline{S($supp Γ)}$. And so supp $S(\Gamma) \supset \overline{S($supp Γ)}$.

Whence supp $S(\Gamma) \supset \overline{S($supp Γ)}$. On the other hand, take any $\mu \in S(\Gamma)$. Then $\mu \in \Gamma^n$ for some n, implying that supp $\mu \subset \overline{S($supp Γ)}$. This gives supp $S(\Gamma) \subset \overline{S($supp Γ)}, and the result follows.

Since the Dirac measure θ at 0 is a zero in $P(S)$, we can now consider quasi-nilpotent sets in $P(S)$.
Theorem 4. A subset \(\Gamma \subset P(S) \) is quasi-nilpotent if and only if \(\text{supp} \, \Gamma \) is quasi-nilpotent in \(S \).

Proof. Suppose first that \(\Gamma \) is quasi-nilpotent, i.e. \(\theta \in \overline{S(\Gamma)} \). By virtue of Lemma 3, we have \(0 \in S(\text{supp} \, \Gamma) \) i.e. \(\text{supp} \, \Gamma \) is quasi-nilpotent. Conversely, suppose \(\text{supp} \, \Gamma \) is quasi-nilpotent in \(S \). This means that \(0 \in S(\text{supp} \, \Gamma) \) and therefore \(\{0\} \) is the minimal ideal \(K(S(\text{supp} \, \Gamma)) \) of the semigroup \(S(\text{supp} \, \Gamma) \). Now consider the minimal ideal \(K(S(\Gamma)) \) of the compact semigroup \(S(\Gamma) \) [6, Theorem 2]. Since \(\text{supp} \, K(S(\Gamma)) = K(\text{supp} \, S(\Gamma)) \) (see, for example, [2, Theorem 5(2)]) and \(\text{supp} \, S(\Gamma) = S(\text{supp} \, \Gamma) \) by Lemma 3, we have \(\{0\} = \text{supp} \, K(S(\Gamma)) \), giving that \(K(S(\Gamma)) = \{\theta\} \). Accordingly \(\theta \in S(\Gamma) \), and the theorem is proved.

By Theorems 2 and 4, we immediately obtain

Theorem 5. A measure \(\mu \in P(S) \) is nilpotent if and only if \(\text{supp} \, \mu \) is quasi-nilpotent in \(S \).

Example 6. The result in Theorem 5 is best possible in the sense that the support of a nilpotent measure in \(P(S) \) need not be a nilpotent subset of \(S \). Take the semigroup \(S = [0, 1] \) with the usual topology and the ordinary multiplication. Let \(\mu \) be the restriction to \(S \) of the Lebesgue measure on the real line. Since \(\text{supp} \, \mu = S \) is quasi-nilpotent, it follows that \(\mu \) is nilpotent. However, \(\text{supp} \, \mu \) is not nilpotent since \((\text{supp} \, \mu)^n = \text{supp} \, \mu = S \) for all \(n \).

Note that Theorem 5 is not true for the compact semitopological semigroup \(S_w(\mu) \) considered in the Remark above. Obviously the Dirac measure \(\delta(u) \) at \(u \) is not nilpotent while \(\text{supp} \, \delta(u) \) is quasi-nilpotent in \(S \).

Applying Theorem 5, we obtain the following results about the set \(N(P(S)) \) of nilpotent elements in \(P(S) \). First we have a sufficient condition for a probability measure to be nilpotent.

Theorem 7. Let \(\mu \in P(S) \). If \(\text{supp} \, \mu \cap N(S) \neq \emptyset \), then \(\mu \in N(P(S)) \).

Proof. Since \(\overline{S(\text{supp} \, \mu) \cap N(S)} \supset \text{supp} \, \mu \cap N(S) \neq \emptyset \), we see that the set \(\text{supp} \, \mu \) is quasi-nilpotent in \(S \) by Theorem 1 (i). Whence \(\mu \) is nilpotent.

Example 8. The converse of Theorem 7 may not hold. For instance, take the semigroup \(S \) with the following multiplication table:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>0</td>
<td>0</td>
<td>a</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>0</td>
<td>b</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>a</td>
<td>a</td>
<td>c</td>
</tr>
</tbody>
</table>

Then the measure \(\mu \in L(S(a), S(b)) \cap N(P(S)) \) since \(0 \in \text{supp} \, \mu^2 \). However, \(\text{supp} \, \mu \cap N(S) = \{b, c\} \cap \{0, a\} = \emptyset \).
Corollary 9. (i) \(N(P(S)) \) is a noncountable set.
(ii) \(\bigcup \{ \text{supp } \mu : \mu \in N(P(S)) \} = S \).

Proof. (i) Take any measure \(\mu \neq \emptyset \) and real number \(0 \leq t < 1 \). Then the measure \(t\mu + (1 - t)\emptyset \) is nilpotent since \(0 \in \text{supp } (t\mu + (1 - t)\emptyset) \cap N(S) \). Hence the set \(N(P(S)) \supset \{ t\mu + (1 - t)\emptyset : 0 \leq t < 1 \} \) and so is noncountable.

(ii) Let \(a \in S \). Since \(0 \in \text{supp } \frac{1}{2}(\delta(a) + \emptyset) \cap N(S) \), it follows that \(\frac{1}{2}(\delta(a) + \emptyset) \in N(P(S)) \). That \(a \in \text{supp } \frac{1}{2}(\delta(a) + \emptyset) \) gives the result.

A semigroup with zero is said to be nil if each element is nilpotent.

Theorem 10. \(P(S) \) is nil if and only if \(S \) is nil.

Proof. The "if" part follows from the fact that, for \(\mu \in P(S) \), \(\text{supp } \mu \cap N(S) = \text{supp } \mu \neq \emptyset \). To prove the "only if" part, take \(a \in S \) and note that \(\delta(a) \) is nilpotent in \(P(S) \). So \(a \) is nilpotent in \(S \) and the proof is complete.

Lemma 11. Let \(\mu, \nu \in P(S) \). If \(\mu \in N(P(S)) \) and \(\text{supp } \mu \subset \text{supp } \nu \), then \(\nu \in N(P(S)) \).

Proof. This is immediate since \(0 \in S(\text{supp } \mu) \subset S(\text{supp } \nu) \).

Theorem 12. (i) \(N(P(S)) \) is a convex set and hence connected.
(ii) \(N(P(S)) = P(S) \).

Proof. (i) Take \(\mu, \nu \in N(P(S)) \). For real number \(0 < t < 1 \), the measure \(t\mu + (1 - t)\nu \in N(P(S)) \) since
\[
\text{supp } (t\mu + (1 - t)\nu) = \text{supp } \mu \cup \text{supp } \nu \supset \text{supp } \mu.
\]
Thus \(N(P(S)) \) is convex.

(ii) Let \(\tau \in P(S) \). Clearly \(\theta/n + (n - 1)\tau/n \in N(P(S)) \) for any positive integer \(n \). As the sequence \((\theta/n + (n - 1)\tau/n)_{n=1}^{\infty} \) converges to \(\tau \), we see that \(N(P(S)) \) is dense in \(P(S) \).

Corollary 13. Let \(W \) be a subset of \(P(S) \). If \(W \supset N(P(S)) \), then \(W \) is a connected set.

Proof. This follows simply from the previous theorem.

For any \(\mu \in P(S) \), it is a well-known fact that the sequence \(((\mu + \mu^2 + \cdots + \mu^n)/n)_{n=1}^{\infty} \) must converge to a measure \(L(\mu) \in P(S) \) such that \(\text{supp } L(\mu) \) is the minimal ideal of the semigroup \(S(\text{supp } \mu) \); see [7] or [8].

Theorem 14. The measure \(\mu \in P(S) \) is nilpotent if and only if \(L(\mu) = \emptyset \).

Proof. In view of the fact that \(L(\emptyset) = \emptyset \) if and only if \(S(\text{supp } \mu) \) contains \(0 \), we apply Theorem 5 to conclude the proof.
REFERENCES

DEPARTMENT OF MATHEMATICS, CHUNG CHI COLLEGE, THE CHINESE UNIVERSITY OF HONG KONG, HONG KONG