Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Relatively uniform Banach lattices


Author: Andrew Wirth
Journal: Proc. Amer. Math. Soc. 52 (1975), 178-180
MSC: Primary 46A40
DOI: https://doi.org/10.1090/S0002-9939-1975-0374862-6
MathSciNet review: 0374862
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Sequential relative uniform and norm convergence agree in a Banach lattice, if and only if it is equivalent to an $ M$ space.


References [Enhancements On Off] (What's this?)

  • [1] Garrett Birkhoff, Lattice theory, Third edition. American Mathematical Society Colloquium Publications, Vol. XXV, American Mathematical Society, Providence, R.I., 1967. MR 0227053
  • [2] K. Knopp, Theory and application of infinite series, 2nd English ed., Blackie, London, 1951.
  • [3] Solomon Leader, Sequential convergence in lattice groups, Problems in analysis (Sympos. dedicated to Salomon Bochner, Princeton Univ., Princeton, N.J., 1969) Princeton Univ. Press, Princeton, N.J., 1970, pp. 273–290. MR 0344842
  • [4] A. C. Zaanen, Stability of order convergence and regularity in Riesz spaces, Studia Math. 31 (1968), 159–172. MR 0240597, https://doi.org/10.4064/sm-31-2-159-172

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46A40

Retrieve articles in all journals with MSC: 46A40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0374862-6
Keywords: Banach lattice, relative uniform convergence, order convergence, $ M$ space, $ {L^P}$ space
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society