ON BIESTERFELDT'S COMPLETION AXIOM SPACES

R. J. GAZIK

ABSTRACT. It is proved that a Hausdorff, totally bounded Completion Axiom space is a uniform space. The method of proof shows that Hausdorff Completion Axiom spaces have completions (in the embedding sense) which are again Hausdorff Completion Axiom spaces; moreover these completions are uniformly regular, uniformly strict, and have the regular extension property.

1. Introduction. The first uniform convergence spaces [2] to be completed, in the embedding sense, were the Completion Axiom (hereafter abbreviated C.A.) spaces of Biesterfeldt [1]. Later Richardson showed that indeed any uniform convergence space has a completion [7]; and since then various papers on completions of uniform convergence spaces or their Cauchy structures have appeared. (See, for example [4] or [5].)

However, the extent to which these original C.A. spaces deviate from uniform spaces is still not determined. The only known result is that a C.A. space has a regular topology as its induced convergence structure [6]. In this note it will be shown that a Hausdorff, totally bounded C.A. space is a uniform space. In doing so, we will prove that Hausdorff C.A. spaces have very strong (in a sense to be made precise below) completions, with extension property, within their own category.

The reader is referred to [2] and [3] for basic definitions although a few pertinent ones are given here. If \((X, I)\) is a uniform convergence space (u.c.s.), a \(\Delta\)-symmetric base for \(I\) is a base consisting of symmetric filters, each of which is coarser than the diagonal filter. Then \((X, I)\) is a C.A. space if there exists a \(\Delta\)-symmetric base \(B\) for \(I\) such that \(\mathcal{F}\) is Cauchy in \(X\) iff \(\mathcal{F} \times \mathcal{F} \geq \Phi\) for every \(\Phi \in B\). \((X, I)\) is \emph{uniformly regular} if \(\text{cl}_{X \times X} \Phi \in I\) whenever \(\Phi \in I\). Completions are taken in the embedding sense; that is \((X^*, I^*)\) is a completion of \((X, I)\) if there is a uniform homeomorphism of \((X, I)\) onto a dense subspace of \((X^*, I^*)\) and \((X^*, I^*)\) is complete. A completion \((X^*, I^*)\) of \((X, I)\) is \emph{uniformly strict} if there is some \(\Phi^* \in I^*\) such that when \(\forall^* \in \Phi^*\) and \(y \in X^*, V^*(y) \cap X \neq \emptyset\).
2. Results.

Proposition 1. Let (X, l) be a u.c.s. with A-symmetric base β. Then, for $A \subseteq X \times X$, $\text{cl}_{X \times X} A = \bigcup (V \circ A \circ V : V \in \Phi)$, the union being taken over all $\Phi \in \beta$.

Proof. Notice first that for any u.c.s. (X, l) with A-symmetric base β and $B \subseteq X$, $\text{cl}_X B = \bigcup (B(\Phi) : \Phi \in \beta)$ where $B(\Phi) = \{x : V(x) \cap B \neq \emptyset \text{ for all } V \in \Phi\}$.

Now let β^* be any A-symmetric base for the product u.c.s. and let $(x, y) \in \text{cl}_{X \times X} A$. By applying the remark above to β^*, it follows that $(x, y) \in A(\Phi^*)$ for some $\Phi^* \in \beta^*$. If p_1, p_2 are the projection maps it is seen that $(p_1 \times p_2)\Phi^* \circ (p_2 \times p_2)\Phi^*$ exists and is therefore finer than some $\Psi \in \beta$. We assert that $(x, y) \in \bigcap (V \circ A \circ V : V \in \Psi)$. For if $V \in \Psi$ and $(p_1 \times p_1)V \circ (p_2 \times p_2)V \subseteq V$, V symmetric in Φ^*, then $V(x, y) \cap A$ is not empty so there exists $(a_1, a_2) \in A$ with $((a_1, a_2), (x, y)) \in V$. Thus $(x, y) \in (p_1 \times p_1)V \circ A \circ (p_2 \times p_2)V \subseteq V \circ A \circ V$.

Conversely, assume $(x, y) \in \bigcap (V \circ A \circ V : V \in \Phi)$ for some $\Phi \in \beta$. Then there are points $(x, a(V)) \in V$, $(a(V), b(V)) \in A$, $(b(V), y) \in V$. The filters of sections of the nets $(a(V) : V \in \Phi)$, $(b(V) : V \in \Phi)$, converge, respectively, to x, y. Hence the filter of sections of the net $((a(V), b(V)) : V \in \Phi)$ converges to (x, y) and contains A. This means $(x, y) \in \text{cl}_{X \times X} A$.

Proposition 2. Let (X, l) have a uniformly regular, uniformly strict completion (X^*, l^*). Then l^* is generated by filters of the form $\text{cl}_{X^* \times X^*} \Phi$, $\Phi \in l$.

Proof. First, if $\Phi \in l$, $\text{cl}_{X^* \times X^*} \Phi \in l^*$ follows from the uniform regularity of (X^*, l^*).

Let $\Phi^* \in l^*$ and put $\Phi_1^* = \Phi^* \cap \Psi^*$ where $\Psi^*(x) \cap X \neq \emptyset$ for all $x \in X^*$, $V^* \in \Psi^*$. With no loss of generality assume Φ^*_1 is symmetric and coarser than the diagonal filter. Define $\Sigma^* = \Phi_1^* \circ \Phi_1^* \circ \Phi_1^*$; we will show that $\Phi^*_1 \geq \text{cl}_{X^* \times X^*} \Sigma_1$, where Σ_1 is the restriction of Σ^* to $X \times X$. Let $C \in \Sigma_1$, $C = C^* \cap X \times X$, $C^* \in \Sigma^*$. Choose a symmetric $V_1^* \in \Phi_1^*$ such that $V_1^* \circ V_1^* \circ V_1^* \subseteq C^*$. Let $(x, y) \in V_1^*$. To show that $(x, y) \in \text{cl}_{X^* \times X^*} C$, it suffices, by Proposition 1, to prove that $(x, y) \in \bigcap (V^* \circ C \circ V^* : V^* \in \Phi_1^*, V^* \text{ symmetric}, V^* \subseteq V_1^*)$.

Let V^* be as indicated; then $V^* \in \Psi^*$ so there are points $z_1 \in V^*(x) \cap X$, $z_2 \in V^*(y) \cap X$. Thus $(z_1, z_2) \in V^* \circ V^* \circ V^* \subseteq C^*$. Also $(z_1, z_2) \in C$ because z_1, $z_2 \in X$. Hence $(x, y) \in V^* \circ C \circ V^*$ as desired.

Proposition 3. Let (X, l) be uniformly regular with uniformly strict, uniformly regular completion (X^*, l^*). If (Y, D) is any complete, uniformly regular u.c.s. and $f : (X, l) \rightarrow (Y, D)$ is uniformly continuous, then f has a uniformly continuous extension $f^* : (X^*, l^*) \rightarrow (Y, D)$.
Proof. Define f^* by $f^*(y) = \lim f(y)$ where $\mathcal{F} \to y$ in X^* and $X \in \mathcal{F}$. Since the embedding $X \to X^*$ is also an embedding of the Cauchy structures, f^* is well defined. Let $\Phi^* \in I^*$. By Proposition 2, $\Phi^* \geq cl_{X^* \times X^*} \Phi$ for some $\Phi \in I$. Since (Y, D) is uniformly regular, $cl_{Y \times Y}(f \times f)\Phi \in D$, so to prove that f^* is uniformly continuous it suffices to show that $(f^* \times f^*)(cl_{X^* \times X^*} \Phi) \geq cl_{Y \times Y}(f \times f)\Phi$. We claim, in fact, that, if $A \in \Phi$, $(f^* \times f^*)(cl_{X^* \times X^*} A) \subset cl_{Y \times Y}(f \times f)A$. For if $(x, y) \in cl_{X^* \times X^*} A$, then $(x, y) \in \bigcap (V^* \circ A \circ V^* : V^* \in \Phi^*)$ for some $\Phi^* \in I^*$ by Proposition 1. As in the last part of the proof of Proposition 1, there are nets $a(V^*) \to x$, $b(V^*) \to y$ with the section filter \mathcal{G} of the product net containing A. Then

$$(f^* \times f^*)(x, y) = \lim (f \times f)_{\mathcal{G}} \in cl_{Y \times Y}(f \times f)A.$$

Remark. The referee has made the observation that, for C.A. spaces, the completion of Theorem 1 below is that of Biesterfeldt [1] when equivalent Cauchy filters are identified. Moreover, he observes that if $U(\langle \mathcal{F} \rangle)$ is chosen to be an ultrafilter in (\mathcal{F}), then the completion of Theorem 1 is the Kowalsky completion. (See [5, p. 103].)

Theorem 1. Let (X, I) be a Hausdorff C.A. space. Then (X, I) has a uniformly regular, uniformly strict, Hausdorff completion which also is a C.A. space. This completion has the extension property relative to uniformly continuous maps and complete, uniformly regular u.c.s.

Proof. Let X^\wedge be the collection of equivalence classes (\mathcal{F}) of Cauchy filters on X under the relation $\mathcal{F} \sim \mathcal{G}$ if $\mathcal{F} \times \mathcal{G}$ is in I. For each (\mathcal{F}) let $U(\langle \mathcal{F} \rangle)$ be an arbitrary Cauchy filter equivalent to \mathcal{F} with the understanding that $U(\langle \mathcal{F} \rangle) = \mathcal{F}$. For $S \subset X \times X$ let S^\wedge be the collection of all pairs $(\langle \mathcal{F} \rangle, \langle \mathcal{G} \rangle)$ such that $A \times B \subset S$ for some A, B in $U(\langle \mathcal{F} \rangle), U(\langle \mathcal{G} \rangle)$ respectively. Let β be an admissible Δ-symmetric base for the C.A. space (X, I). For each $\Phi \in \beta$ define Φ^* to be the filter generated by the $A^\wedge, A \in \Phi$. If $A \in \Phi, \Phi \in \beta$ and \mathcal{F} is any Cauchy filter on X, then $\mathcal{F} \times \mathcal{F} \geq \Phi$ by C.A. Hence $(\langle \mathcal{F} \rangle, \langle \mathcal{G} \rangle) \in A^\wedge$ and each Φ^* is coarser than the diagonal filter in $X^\wedge \times X^\wedge$. Standard arguments show, then, that the collection β^\wedge of all $\Phi^*, \Phi \in \beta$ is a Δ-symmetric base for a u.c.s. I^\wedge on X^\wedge. Define $j: X \to X^\wedge$ by $j(x) = \langle x \rangle$. Notice that if $\Phi \in \beta$ and $\langle \mathcal{F} \rangle \in X^\wedge, A \in \Phi$, then $U(\langle \mathcal{F} \rangle) \times U(\langle \mathcal{F} \rangle) \geq \Phi$ by C.A. so $U \times U \subset A$ for some $U \in U(\langle \mathcal{F} \rangle)$. Thus whenever $y \in U, \langle y \rangle \in A^\wedge(\langle \mathcal{F} \rangle)$. This shows that (X^\wedge, I^\wedge) is uniformly strict if, in fact, it is a completion. (X^\wedge, I^\wedge) is complete: Suppose $\Omega \times \Omega \geq \Phi^*$ for $\Phi \in \beta$ and define, for $T \in \Omega$, $A \in \Phi, [A, T] = \{x: \langle x \rangle \in A^\wedge(T)\}$. The preceding paragraph shows that $[A, T] \neq \emptyset$ and it follows easily that the collection \mathcal{F} of supersets of the $[A, T]$ is a filter on X. In fact \mathcal{F} is a Cauchy filter. For if $A \in \Phi$ there exists $T \in \Omega$ such that $T, T \subset A$. If $x \in \langle \mathcal{F} \rangle \cap (A \times T)$ then there are filters \mathcal{G}, \mathcal{H} in T such that $(\langle \mathcal{G} \rangle, \langle \mathcal{H} \rangle) \in \mathcal{F}$, $(\langle y \rangle, \langle \mathcal{H} \rangle) \in A^\wedge$. Hence $(\langle x \rangle, \langle y \rangle) \in A^\wedge \circ
404 R. J. GAZIK

A^n o A^n C (A o A o A)^n or (x, y) e A^3. This means \(\mathcal{F} \times \mathcal{F} \geq \Phi^3 \) so \(\mathcal{F} \) is Cauchy. It is now asserted that \(\Omega \rightarrow (\mathcal{F}) \), in fact that \(\Omega \times (\mathcal{F}) \geq \Phi^\omega \). If \(A \in \Phi \) then \(\mathcal{F} \times \mathcal{F} \geq \Phi \) by C.A. so \([A_1, T] \times [A_1, T] \subset A \) for some \(T \in \Omega, A_1 \in \Phi \), \(A_1 \subset A \). Let \((\mathcal{O}) \in T \); using C.A. again, \(U \times U \subset A_1 \) for some \(U \in \mathcal{U}(\mathcal{O}) \) hence \(U \subset (x, \langle \delta \rangle) \subset A_1(\mathcal{O}) \subset [A_1, T] \). Thus \(U \times [A_1, T] \subset A \), hence \((\mathcal{O}), (\mathcal{F}) \) is \(A^\omega \). That is, \(T \times (\mathcal{F}) \subset A^\omega \).

The fact that \(j \) is a uniform homeomorphism follows from the relation \((j \times j)\Phi \geq \Phi^\omega \) and the fact that \((j \times j)\Psi \geq \Phi^\omega \) implies \(\Psi \geq \Phi \). It is obvious that \((X^\omega, I^\omega) \) is \(T_1 \), hence Hausdorff.

Notice that any C.A. space \((X, I)\) is uniformly regular because \(\text{cl}_{X \times X} \Phi \geq \Phi^3 \) by Proposition 2 of [6]. Thus the proof of this theorem is complete if it can be shown that \((X^\omega, I^\omega) \) is a C.A. space. For this suppose \(\Omega \) is Cauchy in \(X^\omega \), \(\Omega \times \Omega \geq \Phi^\omega \), and let \(\Phi_1 \) be any member of \(B \). The \(F \) constructed in the proof of completeness is Cauchy in \(X \) so, by C.A. in \(X \), \(\mathcal{F} \times \mathcal{F} \geq \Phi_1 \). Hence, to show \(\Omega \times \Omega \geq (\mathcal{F} \times \mathcal{F})^\omega \) it suffices to prove \(\Omega \times \Omega \geq (\mathcal{F} \times \mathcal{F})^\omega \). For this let \([A, T]\) be given in \(F \); we may assume \(T_1 \times T_1 \subset A^\omega \) for some \(T_1 \in \Omega, T_1 \subset T \). Then \(T_1 \times T_1 \subset ([A, T_1] \times [A, T_1])^\omega \), for if \((\mathcal{O}) \), \((\mathcal{H}) \in T_1 \), there are \(U \in \mathcal{U}(\mathcal{O}), V \in \mathcal{U}(\mathcal{H}) \) such that \(U \times U \subset A, V \times V \subset A \) (C.A. has been used again) so \(U \subset (x, \langle \delta \rangle) \subset A^\omega(\mathcal{O}) \subset [A, T_1] \) and \(V \subset (x, \langle \delta \rangle) \subset A^\omega(\mathcal{H}) \subset [A, T_1], \) thus \((\mathcal{O}), (\mathcal{H}) \in ([A, T_1] \times [A, T_1])^\omega \).

We note that the extension property of \((X^\omega, I^\omega) \) and the fact that a uniform space is uniformly regular implies that \((X^\omega, I^\omega) \) is the usual completion of \((X, I) \) whenever \(I \) is a Hausdorff uniformity.

Proposition 4. Let \((X, I)\) be a C.A. space. Then \((X, I)\) is totally bounded if and only if there exists \(\Phi \in I \) such that whenever \(V \in \Phi \), there is a finite subset \(F \) of \(X \) such that \(V(F) = X \).

Proof. Suppose \((X, I)\) is totally bounded and let \(\Phi \) be a member of an admissible \(\Delta \)-symmetric base for \(I \). Suppose for some \(V \in \Phi \), \(|X - V(F)| > F \) is finite \(F \) is a filter base on \(X \). If this filter base is coarser than a Cauchy filter \(\mathcal{F} \), then \(\mathcal{F} \times \mathcal{F} \geq \Phi \) by C.A. A contradiction now is obtained exactly like the uniform space case. Conversely suppose the condition of the proposition holds and let \(\mathcal{U} \) be an ultrafilter on \(X \). If \(V \in \Phi \) is symmetric, some \(V(x) \in \mathcal{U} \) and \(V(x) \times V(x) \subset V^2 \), so \(\mathcal{U} \times \mathcal{U} \geq \Phi^2 \) and \(\mathcal{U} \) is Cauchy.

Theorem 2. A totally bounded Hausdorff C.A. space is a uniform space.

Proof. Let \((X^\omega, I^\omega)\) be the completion of Theorem 1. By the proof of strictness of \((X^\omega, I^\omega)\), \(\Phi \in B \) implies \(V^\omega(y) \cap j(x) \neq \emptyset \) for each \(y \in X^\omega \), \(V \in \Phi \). Hence, by Proposition 4, total boundedness of \((X, I)\) carries over to \((X^\omega, I^\omega)\). So the structure induced by \(I^\omega \) is a compact Hausdorff topology.

But there is only one possible C.A. structure which induces a compact, Hausdorff topology, namely a uniformity [6, Proposition 2]. Since \((X, I)\) is
embedded uniformly in \((X^\sim, I^\sim)\), \((X, I)\) is a uniform space.

Corollary 1. Let \((X, I)\) be a Hausdorff C.A. space. Then \(I\) induces a completely regular topology on \(X\) if and only if there is a totally bounded, Hausdorff C.A. structure on \(X\) which induces the same topology as \(I\).

Whether each C.A. space is a uniform space remains unresolved. A counterexample would produce a proper class of u.c.s. strictly larger than the class of uniform spaces which has completions within its own category.

The author wishes to thank the referee for many helpful suggestions, especially for pointing out a gap in the proof of the original version of Theorem 2.

REFERENCES

DEPARTMENT OF MATHEMATICS, ARKANSAS STATE UNIVERSITY, STATE UNIVERSITY, ARKANSAS 72467