A NOTE ON THE TOPOLOGY OF C-CONVERGENCE IN HYPERSPACES

PEDRO MORALES

ABSTRACT. In this note we generalize and partially correct a recent Tychonoff theorem for hyperspaces of F. A. Chimenti [1].

For a topological space X, the symbols $\exp^*(X)$, $[\exp^*(X)]$ will denote the hyperspace of all nonempty subsets, of all nonempty closed subsets, respectively, of X. In [1, p. 284], F. A. Chimenti claims the following result:

Theorem A. If $\exp^*(X_i)$ is equipped with a topology that preserves the C_i-convergence for every $i \in I$, then the product space $\prod_{i \in I} \exp^*(X_i)$ is compact if and only if the X_i are compact.

The necessity part of Theorem A is not true, as is seen by choosing the X_i noncompact and assigning to each $\exp^*(X_i)$ the indiscrete topology. The purpose of this note is to generalize the sufficiency part of Theorem A and to give a corrected version of the necessity part.

In [1, p. 283] it is shown that there exist nonindiscrete topologies on $\exp^*(X)$ preserving C-convergence. It is clear that there exists a largest topology, denoted T_C, on $\exp^*(X)$ preserving C-convergence. We will say that a subset F of $\exp^*(X)$ is C-closed if no net in F C-converges to an element of $\exp^*(X) - F$. It is obvious that the set of all C-closed subsets of $\exp^*(X)$ defines a topology T on $\exp^*(X)$ such that a subset of $\exp^*(X)$ is T-closed if and only if it is C-closed. The lower semifinite topology T_L on $\exp^*(X)$ is the topology having as open subbase the subsets of $\exp^*(X)$ of the form $\{A: A \cap U \neq \emptyset\}$, where U is open in X [3, p. 179]. It is clear that T_L preserves C-convergence, that is, $T_L \subseteq T_C$. Of the following four properties, only the last requires a formal proof, in which case, we apply the argument of Theorem 4.2 of [3, p. 161]:

1. $T_C = T_C$. In fact, it suffices to note that T_C preserves C-convergence.

2. If $\{\exp^*(X)\} \subseteq F \subseteq \exp^*(X)$, then the topology induced on F by T_C is the largest topology on F preserving C-convergence.
(3) If \(X \) is compact and \(\text{exp}^*(X) \subseteq F \subseteq \text{exp}^*(X) \), then \(F \) is \(T_C \)-compact. In fact, it suffices to note that \(F \) is \(C \)-compact, since \(\text{exp}^*(X) \) is \(C \)-compact [1, p. 282].

(4) If \(\text{exp}^*(X) \subseteq F \subseteq \text{exp}^*(X) \) and \(F \) is \(T_L \)-compact, then \(X \) is compact. In fact, let \(\{U_i\}_{i \in I} \) be an open cover of \(X \). Write \(\{U_i\} = \{A : A \in F \text{ and } A \cap U_i \neq \emptyset\} \). Then \(\{\{U_i\}_{i \in I} \} \) is an open cover of \(F \), and so contains a finite subcover \(\{\{U_{i_k}\}_{1 \leq k \leq n}\} \) of \(F \). Let \(x \in X \). Then \(\{x\} \subseteq F \), so \(\{x\} \subseteq \{U_{i_k}\} \) for some \(k \), that is, \(x \in U_{i_k} \).

Properties (3) and (4), together with the classical Tychonoff theorem, yield

Theorem. For each \(i \in I \), let \(\text{exp}^*(X_i) \subseteq F_i \subseteq \text{exp}^*(X_i) \) and let \(T_i \) be a topology on \(F_i \). Then:

(a) If \(T_i \subseteq T_C \) and \(X_i \) is compact for all \(i \in I \), then the product space \(\prod_{i \in I} F_i \) is compact.

(b) If \(T_L \subseteq T_i \) for all \(i \in I \) and the product space \(\prod_{i \in I} F_i \) is compact, then the \(X_i \) are compact.

Remarks. (i) Under the additional hypothesis \(T_L \subseteq T_i \) for all \(i \in I \), the conclusion of Theorem A is true. But in this case, our Theorem yields a larger class of spaces for which the same conclusion holds.

(ii) The final remark of [1] asserts that if \(\text{exp}^*(X_i) \) is equipped with a topology that preserves the \(C_i \)-convergence and the \(X_i \) are \(T_1 \) compact, then the product space \(\prod_{i \in I} \text{exp}^*(X_i) \) is compact. The Theorem contains this result without the \(T_1 \) restriction.

(iii) For each \(i \in I \), let \(T_i \) be a topology of finite type on \(F_i \) [1, p. 283]. Then \(T_L \subseteq T_i \) and, if \(F_i \) is a set of compact subsets of \(X_i \), then \(T_i \subseteq T_C \). The Theorem applies to this case. In particular, if \(T_i \) is the Vietoris topology, we obtain Theorem 3.3 of [2] with its converse.

REFERENCES

DEPARTEMENT DE MATHEMATIQUES, UNIVERSITE DE MONTRAL, MONTRAL, QUEBEC, CANADA