R₃-quasi-uniform spaces
and topological homeomorphism groups

MASSOOD SEYEDIN

ABSTRACT. It is well known that if X is a completely regular space and G is a homeomorphism group of X onto itself such that G is equicontinuous with respect to a compatible uniformity of X, then G is a topological group under the topology of pointwise convergence. In this paper, we obtain a generalization of the above result by means of R₃-quasi-uniformities.

1. Introduction. Let (X, r) be a topological space. It is well known that if U is a compatible uniformity on X such that G is a homeomorphism group that is equicontinuous with respect to U, then G is a topological group under the topology of pointwise convergence. R. V. Fuller has obtained an analogous result for regular spaces [2] and we have shown previously that a similar result applies when (X, r) is only an R₀ space (and hence, in particular, if X is T₁ or regular) [6]. In this paper we use R₃-quasi-uniformities to complement Fuller’s result. We take the domain space (X, r) to be an arbitrary topological space. If our domain space is regular, it is known that there exists a compatible R₃-quasi-uniformity U on X, that is, r = τₚ [5]. Finally we give a simple example of a non-R₀ topological space (hence not regular) for which our principal result, Theorem 6, obtains.

Let Y be a topological space. A collection U* of two-element open covers of Y is said to be a semiuniformity for Y if for each q ∈ Y and each neighborhood V of q there is {V₁, V₂} in U* such that q ∈ V₁ ⊂ V and Y - V₂ is a neighborhood of q [2]. Let F be a family of functions from a topological space X to semiuniform space (Y, U*). Then F is semiequicontinuous if for each V ∈ U* there is an open cover A of X such that A refines f⁻¹(V) for each f ∈ F [2]. One may easily show that a topological space has a semiuniformity if and only if it is regular.

Let X be a nonempty set. A quasi-uniformity for X is a filter U of reflexive subsets of X × X such that if U ∈ U, there is V ∈ U such that V o V ⊂ U [5]. Let G be a collection of maps from a topological space (X, r) into a quasi-uniform space (Y, U) and let x ∈ X. Then F is quasi-equicontinuous at x provided that for each U ∈ U there exists a neighbor-
hood N of x such that for $f \in F$, $f(N) \subset U(f(x))$ and F is quasi-equicontinuous provided F is quasi-equicontinuous at each $x \in X$. If $y \in Y$ and $U_1 \in \mathcal{U}$ such that $U_1(y)$ is open and $U_2 \in \mathcal{U}$ such that $U_2 \circ U_2 \circ U_2 \circ U_2(y) \subset U_1(y)$ and $U_2 = U_2^{-1}$, then $I = \{U_1(y), \bigcup \text{int} U_2(p); p \notin U_2 \circ U_2(y)\}$ is a two element quasi-uniform cover of X. A quasi-uniform space (X, \mathcal{U}) is R_3, if, given $x \in X$ and $U \in \mathcal{U}$, there exists a symmetric $W \in \mathcal{U}$ such that $W \circ W(x) \subset U(x)$ [3]. It is shown that if (X, r) is regular, then the Pervin quasi-uniformity on X is R_3 [5, Theorem 3.17].

2. Topological groups of homeomorphisms.

Theorem 1. Let (Y, \mathcal{U}) be an R_3-quasi-uniform space. Then the collection of all two element quasi-uniform covers of Y is a semiuniformity for Y.

Proof. Let $q \in Y$ and let V be a neighborhood of q. Let $U_1 \in \mathcal{U}$ such that $U_1(q) \subset V$ and $U_1(q)$ is open. By hypothesis there is a symmetric entourage $U_2 \in \mathcal{U}$ such that $U_2 \circ U_2 \circ U_2 \circ U_2(q) \subset U_1(q)$. Let $C = \{U_1(q), \bigcup \text{int} U_2(y); y \notin U_2 \circ U_2(q)\}$. Suppose that $x \in Y$ and $x \notin U_1(q)$. Note that if $z \in Y$ and $z \notin U_2 \circ U_2(q)$, then $U_2(z) \subset U_1(q)$. Thus $x \notin U_2 \circ U_2(q)$ and $x \in \text{int} U_2(x)$. Therefore C is an open cover of Y. Furthermore, let $p \in U_2(q)$ and suppose that $p \in V_2 = \bigcup \text{int} U_2(y); y \notin U_2 \circ U_2(q)$. Then there exists a $y \in Y$ such that $p \in \text{int} U_2(y)$ and $y \notin U_2 \circ U_2(q)$. But $y \in U_2(p) \subset U_2 \circ U_2(q)$—a contradiction. Then $\mathcal{U}^* = \{C; q \in Y$ and V is a neighborhood of $q\}$ is a semiuniformity for Y.

The semiuniformity \mathcal{U}^* of the preceding theorem will be called a quasi-uniform semiuniformity.

Theorem 2. Let (Y, \mathcal{U}) be an R_3-quasi-uniform space and let F be a family of quasi-equicontinuous functions from a topological space (X, r) into (Y, \mathcal{U}). Then F is semiequicontinuous with respect to the quasi-uniform semiuniformity of \mathcal{U}.

Proof. Let \mathcal{U}^* be the quasi-uniform semiuniformity of \mathcal{U}, let $y, q \in Y$ and $U_1, U_2 \in \mathcal{U}$. Let $I \in \mathcal{U}^*$ such that $I = \{U_1(q), \bigcup \text{int} U_2(y); y \notin U_2 \circ U_2(q)\}$. By hypothesis, for each $x \in X$ there exists a neighborhood N_x of x such that for all $f \in F$, $f(N_x) \subset U_2(f(x))$. It may be seen that $U_2(f(x))$ is contained in either $U_1(q)$ or $V_2 = \bigcup \text{int} U_2(y); y \notin U_2 \circ U_2(q)$ as follows: Let $z_1, z_2 \in U_2(f(x))$, so that $z_1 \notin U_1(q)$ and $z_2 \notin V_2$. Now if $z_2 \notin V_2$, then $z_2 \notin U_2 \circ U_2(q)$ and $(q, z_2) \in U_2 \circ U_2$. Since $(z_2, f(x)) \in U_2$ and $(f(x), z_1) \in U_2$, $z_1 \in U_2 \circ U_2 \circ U_2 \circ U_2(q) \subset U_1(q)$—a contradiction. Thus $\{N_x; x \in X\}$ is the desired open cover of X.

The proof of the following theorem is based on the proof of [2, Theorem 4].

Theorem 3. Let F be a family of one-to-one functions of a topological space (X, r) onto itself. Let \mathcal{U} be an R_3-quasi-uniformity on X such that
Proof. Throughout the proof, if \(p \in X \) and \(U \in \tau \), then \(W(p, U) \) denotes \(\{ f \in F : f(p) \in U \} \). Let \(\mathcal{U}^* \) be the quasi-uniform semuniformity of \(\mathcal{U} \). Let \(g \in F \), \(p \in X \) and \(V \in \tau \) such that \(W(p, V) \) is a neighborhood of \(g^{-1}(p) \). Since \(\tau \subseteq \tau_0 \) there is \(\{ V_1, V_2 \} \in \mathcal{U}^* \) such that \(g^{-1}(p) \subseteq V_1 \subseteq V \) and \(X - V_2 \) is a \(\tau_0 \) neighborhood of \(g^{-1}(p) \). By Theorem 2, \(F^{-1} \) is semi-equicontinuous with respect to \(\mathcal{U}^* \). Let \(U \) be a \(\tau \)-open cover of \(X \) such that \(\mathcal{U} \) refines \(\{ f(V_1), f(V_2) \} \) for all \(f \in F \) and let \(U \) be a member of \(\mathcal{U} \) that contains \(p \). Then \(W(g^{-1}(p), U) \) is a neighborhood of \(g \). Let \(f \in F \) such that \(f \in W(g^{-1}(p), U) \). Then \(f(g^{-1}(p)) \in U \) and since \(f(g^{-1}(p)) \notin f(V_2) \), \(U \notin f(V_2) \). Hence \(U \subseteq f(V_1) \) and \(f^{-1}(U) \subseteq V_1 \subseteq V \). Consequently, \(f^{-1}(U) \in \mathcal{V} \).

Proposition 4. Let \((X, \tau) \) be a topological space and let \(F \) be a collection of quasi-equicontinuous functions from \((X, \tau) \) into a quasi-uniform space \((Y, \mathcal{U}) \). Then the topology of pointwise convergence on \(F \) is jointly continuous.

Proof. Let \(f \in F \) and let \(x \in X \). For any \(U \in \mathcal{U} \), \(U(f(x)) \) is a neighborhood of \(f(x) \). Let \(V \in \mathcal{U} \) such that \(V \circ V \subseteq U \). By hypothesis there exists a neighborhood \(N \) of \(x \) such that for all \(f \in F \), \(f(N) \subseteq V(f(x)) \). Consider the neighborhoods \(W(x, V)(f) \) and \(N \) of \(f \) and \(x \) respectively. Let \(z \in N \) and let \(g \in W(x, V)(f) \). Then \((f(x), g(x)), (g(x), g(z)) \in V \) and \(g(z) \in V \circ V(f(x)) \subseteq U(f(x)) \).

Theorem 5 [2, Theorem 5]. Let \(F \) be a semigroup (under composition) of continuous functions from a topological space \(X \) into itself. If the topology of pointwise convergence on \(F \) is jointly continuous, then composition is continuous relative to the topology of pointwise convergence.

Theorem 6. Let \((X, \tau) \) be any topological space and let \(G \) be a group of homeomorphisms of \(X \) onto \(X \). Let \(\mathcal{U} \) be any \(R_3 \)-quasi-uniformity on \(X \) such that \(\tau \subseteq \tau_0 \) and \(G \) is quasi-equicontinuous with respect to \(\mathcal{U} \). Then \(G \) is a topological group under the topology of pointwise convergence.

Proof. By Proposition 4, the topology of pointwise convergence on \(G \) is jointly continuous. Thus by Theorems 3 and 5, \(G \) is a topological group under the topology of pointwise convergence.

We conclude by giving an example of a non-\(R_0 \) topological space \((X, \tau) \) with an \(R_3 \)-quasi-uniformity \(\mathcal{U} \) on \(X \) such that \(\tau \subseteq \tau_0 \).

Definition [4]. A preorder on a set \(X \) is any reflexive and transitive relation on \(X \).

Example. Let \(\mathbb{N} \) denote the set of natural numbers. Let \(\leq \) be an antisymmetric preorder on \(\mathbb{N} \) defined as follows:
(i) $x \leq x$ for all $x \in N$,
(ii) $2 \leq 2^k$, $k = 1, 2, 3, \ldots$, and
(iii) $3 \leq 3^k$, $k = 1, 2, 3, \ldots$.

Let τ be the left topology associated with the preordering \leq [4]. It is not difficult to see that (N, τ) is a T_0 space which is not T_1 and hence not R_0 [5, Corollary 3.9]. Let $U_n = \{(x, y) | x = y \text{ or } x > n\}$, $\beta = \{U_n | n \in N\}$ and \mathcal{Q} denote the quasi-uniformity on N generated by the base β [1]. Then \mathcal{Q} is an R_3-quasi-uniformity on N with the property that τ is properly contained in \mathcal{Q}.

REFERENCES

DEPARTMENT OF MATHEMATICS, NATIONAL UNIVERSITY OF IRAN, EVEEN, TEHRAN, IRAN