An elementary method for estimating error terms in additive number theory

Author:
Elmer K. Hayashi

Journal:
Proc. Amer. Math. Soc. **52** (1975), 55-59

MSC:
Primary 10J99

DOI:
https://doi.org/10.1090/S0002-9939-1975-0376586-8

MathSciNet review:
0376586

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let denote the number of ways of representing the integers not exceeding as the sum of members of a given sequence of nonnegative integers. Using only elementary methods, we prove a general theorem from which we deduce that, for every ,

**[1]**P. T. Bateman,*The Erdös-Fuchs theorem on the square of a power series*(to appear). MR**0498470 (58:16582)****[2]**P. T. Bateman, E. E. Kohlbecker and J. P. Tull,*On a theorem of Erdös and Fuchs in additive number theory*, Proc. Amer. Math. Soc.**14**(1963), 278-284. MR**26**#2417. MR**0144876 (26:2417)****[3]**P. Erdös and W. H. J. Fuchs,*On a problem of additive number theory*, J. London Math. Soc.**31**(1956), 67-73. MR**17**, 586. MR**0074439 (17:586d)****[4]**W. Jurkat, (to appear).**[5]**B. Randol,*A lattice-point problem*. II, Trans. Amer. Math. Soc.**125**(1966), 101-113. MR**34**#1292. MR**0201408 (34:1292)****[6]**R. C. Vaughan,*On the addition of sequences of integers*, J. Number Theory**4**(1972), 1-16. MR**44**#5291. MR**0288093 (44:5291)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
10J99

Retrieve articles in all journals with MSC: 10J99

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1975-0376586-8

Article copyright:
© Copyright 1975
American Mathematical Society