Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Certain overrings of right hereditary, right Noetherian rings are $ V$-rings


Author: Friedhelm Hansen
Journal: Proc. Amer. Math. Soc. 52 (1975), 85-90
MSC: Primary 16A52
DOI: https://doi.org/10.1090/S0002-9939-1975-0376764-8
MathSciNet review: 0376764
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It will be shown that a particular quotient ring of a ring $ R$ is a nontrivial $ V$-ring if $ R$ is a special kind of a right hereditary, right Noetherian ring. Another result states that all overrings of a right and left Goldie $ V$-ring, which is semiartinian modulo every essential right ideal, are $ V$-rings.


References [Enhancements On Off] (What's this?)

  • [1] H. H. Brungs, Overrings of principal ideal domains, Proc. Amer. Math. Soc. 28 (1971), 44-46. MR 42 #6020. MR 0271137 (42:6020)
  • [2] A. W. Chatters, The restricted minimum condition in Noetherian hereditary rings, J. London Math. Soc. 4 (1971), 83-87. MR 45 #1959. MR 0292877 (45:1959)
  • [3] J. H. Cozzens, Homological properties of the ring of differential polynomials, Bull. Amer. Math. Soc. 76 (1970), 75-79. MR 41 #3531. MR 0258886 (41:3531)
  • [4] C. C. Faith, Lectures on injective modules and quotient rings, Lecture Notes in Math., no. 49, Springer-Verlag, Berlin and New York, 1967. MR 37 #2791. MR 0227206 (37:2791)
  • [5] -, Algebra: Rings, modules and categories. I, Springer-Verlag, New York, 1973. MR 0366960 (51:3206)
  • [6] A. W. Goldie, Semi-prime rings with maximum condition, Proc. London Math. Soc. (3) 10 (1960), 201-220. MR 22 #2627. MR 0111766 (22:2627)
  • [7] O. Goldman, Rings and modules of quotients, J. Algebra 13 (1969), 10-47. MR 39 #6914. MR 0245608 (39:6914)
  • [8] F. Hansen, On one-sided prime ideals, Pacific J. Math. 56 (1975). MR 0379582 (52:487)
  • [9] L. S. Levy, Unique subdirect sums of prime rings, Trans. Amer. Math. Soc. 106 (1963), 64-76. MR 26 #136. MR 0142567 (26:136)
  • [10] G. O. Michler and O. E. Villamayor, On rings whose simple modules are injective, J. Algebra 25 (1973), 185-201. MR 47 #5052. MR 0316505 (47:5052)
  • [11] B. L. Osofsky, On twisted polynomial rings, J. Algebra 18 (1971), 597-607. MR 43 #6241. MR 0280521 (43:6241)
  • [12] V. S. Ramamurthi and K. M. Rangaswamy, Generalized $ V$-rings, Math. Scand. 31 (1972), 69-77. MR 48 #339. MR 0321974 (48:339)
  • [13] B. T. Stenström, Rings and modules of quotients, Lecture Notes in Math., vol. 237, Springer-Verlag, Berlin and New York, 1971. MR 48 #4010. MR 0325663 (48:4010)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A52

Retrieve articles in all journals with MSC: 16A52


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0376764-8
Keywords: $ V$-ring, hereditary and Noetherian ring, restricted minimum condition, quotient ring, overring
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society