ON THE RANGE OF A HYPONORMAL DERIVATION

JOSEPH G. STAMPFLI

ABSTRACT. The inner derivation induced by a hyponormal operator has closed range if and only if the operator has finite spectrum.

Let $\mathfrak{B}(H)$ denote the algebra of all bounded linear operators on a Hilbert space H. Define the inner derivation

$$\Delta_A : \mathfrak{B}(H) \to \mathfrak{B}(H)$$

by $\Delta_A(X) = AX -XA$ for $A, X \in \mathfrak{B}(H)$. For $T \in \mathfrak{B}(H)$ normal, Anderson and Foias [1] proved that the range of Δ_T (denoted by $\mathcal{R}(\Delta_T)$) is norm closed if and only if $\sigma(T)$ is finite. Their proof uses a number of deep results on decomposable operators and asymptotic commutativity. In this note we present a simple proof which enables us to extend their result to hyponormal operators.

The method of proof also permits us to answer partially a question raised by S. R. Caradus. To wit, when is $\mathcal{R}(\Delta_T) \cap K = \Delta_T(K)$ where K is the ideal of compact operators. When T is hyponormal we show that equality holds if and only if $\sigma(T)$ is finite. The following result is a slight variation on a well-known result. See [3, Lemma 2] and subsequent material for example.

Lemma 1. Let $T \in \mathfrak{B}(H)$ be hyponormal. Let $\{\lambda_n\}_{n=1}^\infty$ be a sequence of distinct nonisolated boundary points of $\sigma(T)$. Let $\{\epsilon_n\}_{n=1}^\infty$ be a sequence of positive (nonzero) numbers converging to 0. Then there exists an orthonormal sequence $\{f_n\}_{n=1}^\infty$ of vectors from H such that

1. $\| (T - \lambda_n) f_n \| < \epsilon_n$ for $n = 1, 2, \ldots$, and
2. $(f_j, T f_n) = 0$ for $n = 1, \ldots, j - 1$.

Theorem 1. Let $T \in \mathfrak{B}(H)$ be hyponormal. Then $\mathcal{R}(\Delta_T)$ is norm closed if and only if $\sigma(T)$ is finite.

Proof. Let $\sigma(T)$ be infinite. Then $\sigma(T)$ has an infinite number of boundary points. We distinguish two cases. If $\sigma(T)$ has an infinite number of isolated boundary points $\{\lambda_n\}_{n=1}^\infty$, then by a well-known result [2] there exists an orthonormal sequence $\{f_n\}_{n=1}^\infty$ such that $T f_n = \lambda_n f_n$ (this case is much easier to handle and the reader may wish to work it out first). If $\sigma(T)$ has an infinite

Received by the editors July 12, 1974.

Key words and phrases. Hyponormal operator, inner derivation, closed range, compact operator.

1 The author gratefully acknowledges the support of the National Science Foundation under grant no. GP-29006.
number of distinct nonisolated boundary points \(\{ \lambda_n \}_{1}^{\infty} \), we can apply the previous lemma. In this case there exists an orthonormal sequence \(\{ f_n \}_{1}^{\infty} \) such that \(\| (T - \lambda_n) f_n \| < \epsilon_n \) and \(\langle f_j, T f_n \rangle = 0 \) for \(j > n \). We may further assume the \(\lambda_n \)'s converge and we choose the \(\epsilon_n \)'s to satisfy the following conditions:

1. \(\epsilon_n > \epsilon_{n+1} > \cdots \);
2. \(\epsilon_n \leq |\lambda_{n+1} - \lambda_n|^2 \) for \(n = 1, 2, \ldots \);
3. \(\sum_{n=1}^{\infty} \epsilon_n \eta_n < \infty \) where \(\eta_n = \max |\lambda_{j+1} - \lambda_j|^{-\frac{1}{2}} \).

We set \(H_1 = \text{clm} \{ f_n \}_{1}^{\infty} \) and \(H_2 = H_1^* \). If we write \(T f_n = \mu_n f_n + \delta_n \) where \((\delta_n, f_n) = 0 \) then \(|\mu_n - \lambda_n| < \epsilon_n \) and \(\| \delta_n \| < \epsilon_n \) for \(n = 1, 2, \ldots \). We will now define operators \(V_m \) such that \(TV_m - V_m T \) will converge in norm to an operator \(A \in \mathcal{B}(H) \), but \(A \neq TW - WT \) for any \(W \in \mathcal{B}(H) \). We define the unbounded operator \(V \) as follows: \(V f_n = |\lambda_{n+1} - \lambda_n|^{-\frac{1}{2}} f_{n+1} \) for \(n = 1, 2, \ldots \) and \(V g = 0 \) for \(g \in H_2 \). Let \(P_m \) be the projection of \(H \) onto \(\text{clm} \{ f_1, \ldots, f_m \} \) and set \(V_m = VP_m \). We claim that \(TV_m - V_m T \) converges in norm to an operator \(A \in \mathcal{B}(H) \). Note first that

\[
(TV_n - V_n T)f_j = \begin{cases}
|\lambda_{j+1} - \lambda_j|^{-\frac{1}{2}} (\mu_{j+1} - \mu_j) f_{j+1} + |\lambda_{j+1} - \lambda_j|^{-\frac{1}{2}} \delta_{j+1} & \text{for } j \leq n, \\
-V_n \delta_j & \text{for } j > n.
\end{cases}
\]

Thus

\[
[\Delta_T(V_n) - \Delta_T(V_m)]f_j = \begin{cases}
0 & \text{for } j \leq n \leq m, \\
-|\lambda_{j+1} - \lambda_j|^{-\frac{1}{2}} (\mu_{j+1} - \mu_j) f_{j+1} + |\lambda_{j+1} - \lambda_j|^{-\frac{1}{2}} \delta_{j+1} & \text{for } n < j \leq m, \\
(V_m - V_n) \delta_j & \text{for } n \leq m < j.
\end{cases}
\]

Note that \(\| V_n \delta_j \| \leq \| V_n \| \| \delta_j \| \leq n \epsilon_j \leq n_j \epsilon_j \) for all \(n, j \). (The last estimate follows by considering the two cases \(n < j \), \(n > j \) and using the fact that \((\delta_j, f_m) = 0 \) for \(m = j + 1, j + 2, \ldots \) in the latter.) Let \(h \in H_1 \), and write \(h = \sum_{j=1}^{\infty} a_j f_j \). By a standard argument we see that \(\| [\Delta_T(V_n) - \Delta_T(V_m)] b \| \to 0 \) uniformly in \(h \) as \(n, m \to \infty \), since \(|\lambda_{j+1} - \lambda_j|^{-\frac{1}{2}} |\mu_{j+1} - \mu_j| \to 0 \) as \(j \to \infty \) and \(\sum \epsilon_j \eta_j < \infty \). We still must consider vectors \(g \in H_2 \). For such a \(g \),

\[
(TV_n - V_n T)g = -V_n T g.
\]

Let \(T g = \sum a_j f_j + w \) where \(w \in H_2 \). Then \(T^* f_j = \bar{\mu}_j f_j + \gamma_j \) where \((\gamma_j, f_j) = 0 \). Since \(T \) is hyponormal \(\| \gamma_j \| < \epsilon_j \). Thus \(a_j = (T g, f_j) = (g, T^* f_j) = (g, \gamma_j) \) and hence \(|a_j| < \epsilon_j \) if \(g \) is a unit vector. Hence

\[
(TV_n - V_n T)g = \sum_{j=1}^{n} \delta_j |\lambda_{j+1} - \lambda_j|^{-\frac{1}{2}} f_{j+1}.
\]
Finally

\[\| (\Delta_T(V_n) - \Delta_T(V_m)g) \| \leq \sum_{j=n}^{m} |a_j| |\lambda_{j+1} - \lambda_j|^{-\frac{1}{2}} \leq \sum_{n}^{m} \epsilon_j \eta_j \]

and the last term tends to zero as \(n, m \to \infty \). Thus \(\{\Delta_T(V_n)\} \) is a Cauchy sequence and hence it converges to an operator \(A \in \mathcal{B}(\mathcal{H}) \). To complete the first half of the proof we must show that \(A \neq TW - WT \). Assume the contrary. Thus \(\langle (TW - WT)f_n, f_{n+1} \rangle = \langle Af_n, f_{n+1} \rangle \) for all \(n \) and hence

\[\langle \mu_{n+1} - \mu_n \rangle (Wf_n, f_{n+1}) + (Wf_n, \gamma_{n+1}) - (W\delta_n, f_{n+1}) \]

\[= \langle \lambda_{n+1} - \lambda_n \rangle (Wf_n, f_{n+1}) \]

since \(\{\delta_{n+1}, f_{n+1}\} \) and \(\{V\delta_n, f_{n+1}\} \) are zero. Thus \(\|Wf_n, f_{n+1}\| \geq \frac{1}{2} |\lambda_{n+1} - \lambda_n|^{-\frac{1}{2}} \) for large \(n \) since \(\epsilon_n/|\mu_{n+1} - \mu_n| \to 0 \). This implies that \(W \) is unbounded, contrary to assumption. The other half of the proof will be sketched later.

We now turn to the question of Caradus mentioned in the introduction.

Theorem 2. Let \(T \in \mathcal{B}(\mathcal{H}) \) be hyponormal. Then \(\mathcal{R}(\Delta_T) \cap \mathcal{K} = \Delta_T(\mathcal{K}) \) if and only if \(\sigma(T) \) is finite.

Proof. Again we prove only half the theorem now. Let \(\sigma(T) \) be infinite. Proceed as in Theorem 1 and select \(\lambda_n, f_n \) and \(\epsilon_n \) as before. This time however we define \(Vf_n = f_{n+1} \) for \(n = 1, 2, \ldots \) and \(Vg = 0 \) for \(g \in \mathcal{H}_2 \).

By estimates similar to those in Theorem 1, it is easy to see that \(B = TV - VT \) is compact, (indeed, the operator \(A \) in Theorem 1 is compact.) Note that \(\langle (TV - VT)f_n, f_{n+1} \rangle = \langle \mu_{n+1} - \mu_n \rangle \), since the other terms are zero. Assume that \(B = TW - WT \) for some noncompact \(W \in \mathcal{B}(\mathcal{H}) \). Then

\[\langle (TW - WT)f_n, f_{n+1} \rangle = \langle \mu_{n+1} - \mu_n \rangle (Wf_n, f_{n+1}) + (Wf_n, \gamma_{n+1}) - (W\delta_n, f_{n+1}) \]

\[= \langle Bf_n, f_{n+1} \rangle = \langle \mu_{n+1} - \mu_n \rangle \]

Dividing the last equation by \(\langle \mu_{n+1} - \mu_n \rangle \) and letting \(n \to \infty \) we see that \(\langle Wf_n, f_{n+1} \rangle \to 1 \). Thus \(W \) is not compact and therefore \(B \notin \Delta_T(\mathcal{K}) \).

Remark. Let us now assume that \(T \) is hyponormal and \(\sigma(T) \) is finite.

In that case \(T \) must be normal. Thus we write \(T = \Sigma_{j=1}^{n} \lambda_j E_j \) when the \(E_j \)'s are just the spectral projections. For \(V \in \mathcal{B}(\mathcal{H}) \) write \(V \) as a matrix \([V_{ij}] \) on \(\mathcal{H} = \Sigma_{j=1}^{n} \bigoplus E_j \mathcal{H} \). Then the \(ij \) entry in the matrix representation of \((TV - VT) \) is just \(\lambda_i - \lambda_j \). This observation should make it clear that \(\mathcal{R}(\Delta_T) \) is closed and moreover that \(\mathcal{R}(\Delta_T) \cap \mathcal{K} = \Delta_T(\mathcal{K}) \) since \(\{(\lambda_i - \lambda_j)V_{ij}\} \) is compact if and only if \(V_{ij} \) is compact for all \(i \neq j \).

Example. In the case of an arbitrary operator \(T \in \mathcal{B}(\mathcal{H}) \) we note that...
σ(T) finite does not imply $\mathcal{R}(\Delta_T) \cap K = \Delta_T(K)$. For example let $T = \begin{bmatrix} 0 & Q \\ 0 & 0 \end{bmatrix}$ on $\mathcal{H} \oplus \mathcal{H}$ where Q is compact. If $R = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$ then

$$TR - RT = \begin{bmatrix} QC & QD - AQ \\ 0 & -CQ \end{bmatrix}.$$

If we set $A = D = 0$ and $C = I$ then the operator $\begin{bmatrix} Q & 0 \\ 0 & -Q \end{bmatrix}$ is in $\mathcal{R}(\Delta_T) \cap K$. But if Q is a selfadjoint compact operator with trivial kernel then $\begin{bmatrix} Q & 0 \\ 0 & -Q \end{bmatrix}$ is clearly not in $\Delta_T(K)$.

REFERENCES

DEPARTMENT OF MATHEMATICS, INDIANA UNIVERSITY, BLOOMINGTON, INDIANA 47401