Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the distance between zeroes


Author: William T. Patula
Journal: Proc. Amer. Math. Soc. 52 (1975), 247-251
MSC: Primary 34C10
DOI: https://doi.org/10.1090/S0002-9939-1975-0379986-5
MathSciNet review: 0379986
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For the equation $ x'' + q(t)x = 0$, let $ x(t)$ be a solution with consecutive zeroes at $ t = a$ and $ t = b$. A simple inequality is proven that relates not only $ a$ and $ b$ to the integral of $ {q^ + }(t)$ but also any point $ c\epsilon (a,b)$ where $ \vert x(t)\vert$ is maximized. As a corollary, it is shown that if the above equation is oscillatory and if $ {q^ + }(t)\epsilon {L^p}[0,\infty ),1 \leqslant p < \infty $, then the distance between consecutive zeroes must become unbounded.


References [Enhancements On Off] (What's this?)

  • [1] E. A. Coddington and N. Levinson, Theory of ordinary differential equations, McGraw-Hill, New York, 1955. MR 16, 1022. MR 0069338 (16:1022b)
  • [2] W. N. Everitt, M. Giertz and J. Weidmann, Some remarks on a separation and limit point criterion of second-order, ordinary differential equations, Math. Ann. 200 (1973), 335-346. MR 0326047 (48:4393)
  • [3] P. Hartman, Ordinary differential equations, Wiley, New York, 1964. MR 30 #1270. MR 0171038 (30:1270)
  • [4] W. T. Patula and J. S. W. Wong, An $ {L^p}$-analogue of the Weyl alternative, Math. Ann. 197, (1972), 9-28. MR 45 #8913. MR 0299865 (45:8913)
  • [5] A. Wintner, A criterion of oscillatory stability, Quart. Appl. Math. 7 (1949), 115-117. MR 10, 456. MR 0028499 (10:456a)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34C10

Retrieve articles in all journals with MSC: 34C10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0379986-5
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society