Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Oscillation properties of perturbed disconjugate equations


Author: William F. Trench
Journal: Proc. Amer. Math. Soc. 52 (1975), 147-155
MSC: Primary 34C10
MathSciNet review: 0379987
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Oscillation conditions are given for the equation $ {L_u} + f(t,u) = 0$, where

$\displaystyle Lu = \frac{1} {{{\beta _n}}}\frac{d} {{dt}}\frac{1} {{{\beta _{n ... ...}}\frac{1} {{{\beta _1}}}\frac{d} {{dt}}\frac{u} {{{\beta _0}}}(n \geqslant 2),$

with $ {\beta _0}, \ldots ,{\beta _n}$ positive and continuous on $ (0,\infty ),\int {^\infty {\beta _i}dt = \infty (1 \leqslant i \leqslant n - 1)} $, and $ f$ subject to conditions which include $ uf(t,u) \geqslant 0$. The results obtained include previously known oscillation conditions for the equation $ {u^{(n)}} + f(t,u) = 0$ for both linear and nonlinear cases.

References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34C10

Retrieve articles in all journals with MSC: 34C10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0379987-7
Keywords: Oscillation, disconjugate
Article copyright: © Copyright 1975 American Mathematical Society