Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The maps $ B{\rm Sp}(1)\rightarrow B{\rm Sp}(n)$


Author: Zafer Mahmud
Journal: Proc. Amer. Math. Soc. 52 (1975), 473-478
MSC: Primary 55F40
DOI: https://doi.org/10.1090/S0002-9939-1975-0380794-X
MathSciNet review: 0380794
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ Sp(n)$ be the symplectic Lie group. Then it is known that given a map $ f:BSp(1) \to BSp(1),{f^{\ast}}:{H^4}(BSp(1),{\mathbf{Z}}) \to {H^4}(BSp(1),{\mathbf{Z}})$ is zero or multiplication by the square of an odd integer. We generalise the latter part of this result using symplectic $ {K^{\ast}}$-theory.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55F40

Retrieve articles in all journals with MSC: 55F40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0380794-X
Keywords: Classifying space, Lie group, symplectic $ {K^{\ast}}$-theory, representation
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society