CLASSIFICATION OF HOMOTOPY TORUS KNOT SPACES

RICHARD S. STEVENS

ABSTRACT. The existence of nontrivial homotopy torus knot spaces is established as a corollary to the

Theorem. Let p and q be two integers with $p > 1$, $q > 1$, and $(p, q) = 1$. Let \mathcal{M} be a maximal set of topologically distinct compact orientable irreducible 3-manifolds with fundamental group presented by $(a, b|a^pb^q)$. Then $\text{card}(\mathcal{M}) = \frac{1}{2}\phi(pq)$, where ϕ denotes Euler's function.

All spaces are piecewise linear. The symbols I, D, and B denote the closed unit interval, disc, and ball, respectively. S^i denotes the i-dimensional sphere; $i = 1, 2, 3$. The closure and boundary of a space X are denoted respectively by $\text{cl}(X)$ and ∂X. The term knot space refers to the closure of the complement in S^3 of a regular neighborhood of a knot. If m and n are positive integers and $(m, n) = 1$, then the torus knot space corresponding to the pair (m, n) is denoted by $K_{m, n}$.

A 3-manifold is irreducible if every embedded 2-sphere bounds a 3-cell. Let M be a compact manifold with boundary and K be a 2-complex in M. If $M - K$ is homeomorphic to $\partial M \times (0, 1]$, then K is called a spine of M. If M has empty boundary and K is a spine of $\text{cl}(M - B)$, then we will say that K is a spine of M.

If M_1 and M_2 are compact 3-manifolds with boundary, $M_1 \subset M_2$, $\text{cl}(M_2 - M_1) = U = D \times I$, and $M_1 \cap U = \partial D \times I$, then we will say that M_2 is obtained from M_1 by attaching the 2-handle U to M_1. If γ is a simple closed curve in ∂M_1 having $\partial D \times I$ as a regular neighborhood in ∂M_1, then we will say that U was attached to M_1 along γ.

We distinguish between the terms group and group presentation. If $\psi = (x_1, \ldots, x_m|R_1, \ldots, R_n)$ is a group presentation, then G_{ψ} denotes the group presented by ψ, K_{ψ} the 2-complex corresponding to ψ, and P_{ψ} the corresponding P-graph (see [4]). Note that if K_{ψ} is a spine of the compact 3-manifold M, then $\pi_1(M) = G_{\psi}$.

Henceforth ψ denotes the presentation $(a, b|a^pb^q)$.

Lemma. Under the conditions of the Theorem, if $M \in \mathcal{M}$ then K_{ψ} is a spine of M.

Proof. By results of Waldhausen [5], M is a Seifert fiber space with

Received by the editors June 24, 1974.

Key words and phrases. Compact orientable 3-manifold, lens space, Seifert fiber space, spine, 2-complex corresponding to group presentation.

Copyright © 1975, American Mathematical Society

461
orientable quotient surface E, and $\pi_1(M)$ is presented by

$$\psi^* = (x_1, \ldots, x_r, y_1, \ldots, y_s, z \mid [x_i, z] = 1, y_i^{\mu_i} = z),$$

where the genus of E is $g \geq 0$, where ∂M has $r + 1 > 0$ components, each component a torus $S^1 \times S^1$, and where M has $s > 0$ exceptional fibers with respective orders μ_1, \ldots, μ_s. Since G_ψ is isomorphic to G_{ψ^*}, we infer that $r = g = 0, s = 2$, and that μ_1 and μ_2 are p and q in some order. This is argued by considering $\pi_1(M)$ modulo its center and applying results of [2, §4.1].

It now follows that E is a disc with two exceptional points x_1 and x_2 corresponding to the two exceptional fibers. Let γ be an arc in E with $\partial \gamma = \gamma \cap \partial E$ and γ separating x_1 from x_2. Let F be the union of all fibers projecting onto γ. Then F is an annulus that separates M into two solid tori T_1 and T_2. Write $F = S^1 \times I$ and consider the arc $\delta = 1 \mid t \times I$ in M, where $t \in S^1$. Note that $\partial \delta = \delta \cap \partial M$. Let U be a regular neighborhood of δ. Then $\text{cl}(M - U)$ is a genus 2 handlebody to which the 2-handle U is attached. Clearly $U \cap T_1$ and $U \cap T_2$ are each connected. Thus U is attached to T according to the word a^pb^q, and the Lemma follows.

Proof of the Theorem. Choose r and s so that $(r, p) = 1 \leq r < p$ and $(s, q) = 1 \leq s < q$. By the results of [3], we know that a compact orientable 3-manifold $M_{p, r, q, s}$ with boundary and with spine K_ψ is uniquely determined by the faithful embedding of P_ψ in S^2 with gap r on the a-syllable graph and gap s on the b-syllable graph. Any such manifold, having K_ψ as a spine, is thus of the same homotopy type as $K(p, q)$. It will suffice to show that $M_{p, r, q, s}$ and $M_{p', r', q', s'}$ are homeomorphic if and only if $r \equiv \epsilon r' \pmod{p}$ and $s \equiv \epsilon s' \pmod{q}$ where $\epsilon = \pm 1$.

The if part is clear; if $\epsilon = -1$, then we merely reverse the orientation.

Let T denote a genus 2 handlebody with inner meridian discs corresponding to the generators a and b. Following the construction of $M = M_{p, r, q, s}$, the above-mentioned faithful embedding of P_ψ determines a simple closed curve γ_0 (corresponding to the word a^pb^q) in ∂T. Then M is obtained from T by attaching a 2-handle U along γ_0, and ∂M is homeomorphic to the torus $S^1 \times S^1$.

One can construct simple closed curves γ_1 and γ_2 in $\partial T - U$ that correspond respectively to the words a^p and b^s. Moreover this can be done so that $\partial M - (\gamma_1 \cup \gamma_2)$ is connected, γ_1 and γ_2 intersecting in a single crossing point.

To see this, we use the techniques of [3]. Construct in S^2 a faithfully embedded a-syllable graph with three syllables whose exponents are p, p, and r, respectively, and a faithfully embedded b-syllable graph with two syllables whose exponents are q and s. Note that this is possible since the gaps on
the syllables \(a^p \) and \(b^q \) are \(r \) and \(s \) respectively. See Figure 1 for the construction. The ends of the \(a \)-syllables are indicated by \(0, 1, \) and \(2 \), and those of the \(b \)-syllables by \(0 \) and \(2 \). Connect the syllable ends with arcs as shown. In constructing \(T \), we obtain simple closed curves \(\gamma_0, \gamma_1, \) and \(\gamma_2 \) in \(\partial T \) corresponding, respectively, to the words \(a^p b^q, a^p, \) and \(a^r b^s \). Moreover \(\gamma_1 \) and \(\gamma_2 \) intersect in the point \(Q \), which is clearly a crossing point. Attaching the 2-handle \(U \) to \(T \) along \(\gamma_0 \) gives us the manifold \(M \) with the curves \(\gamma_1 \) and \(\gamma_2 \) in \(\partial M - U \) and intersecting at \(Q \).

![Figure 1](image-url)

We show that \(\gamma_1 \cup \gamma_2 \) does not separate \(\partial M \). Let

\[
\psi_1 = \langle a, b \mid a^p b^q, a^p \rangle \quad \text{and} \quad \psi_2 = \langle a, b \mid a^p b^q, a^r b^s \rangle.
\]

Then \(K_{\psi_1} \) and \(K_{\psi_2} \) are spines of closed manifolds—the former of a connected sum of two lens spaces (by the multiplication theorem \([4]\)) and the latter of a lens space (see \([4]\)). This means that each \(M_i \) has a 2-sphere boundary; hence, each curve \(\gamma_i \) does not separate \(\partial M \) \((i = 1, 2)\). It follows that \(\gamma_1 \cup \gamma_2 \) does not separate \(\partial M \).

Let \(y \) be any nonseparating simple closed curve in \(\partial M \). Since \(\pi_1(\partial M) \) is abelian and is generated by \(a^p \) and \(a^r b^s \), we observe that \(y \) corresponds to the word \(W = (a^p)^m(a^r b^s)^n \) in \(\pi_1(M) \) for an appropriate choice of \(m \) and \(n \) \((m, n) = 1\). Let \(\widehat{M} \) be a closed manifold obtained from \(M \) by attaching a 2-handle \(U \) to \(M \) along \(y \) and then attaching a 3-cell to the 2-sphere boundary of the resulting manifold. Then \(\pi_1(\widehat{M}) \) is presented by \(\widehat{\psi} = \langle a, b \mid a^p b^q, W \rangle \).

We show that \(\widehat{M} \) is a lens space if and only if \(|n| = 1 \). If \(n = 0 \), then \((m, n) = 1 \) forces \(m = 1 \) and \(\widehat{M} \) is a connected sum of two nontrivial lens spaces. If \(|n| > 1 \), then \(\pi_1(\widehat{M}) \) has a homomorphism onto the group present-
ed by \((a, b | a^p = b^q = (a^r b^s)^n = 1) \). This group can be shown not to be cyclic (see [1, p. 71]).

If \(|n| = 1\), we assume \(n = 1 \) and obtain \(\hat{\psi} = \langle a, b | a^p b^q, a^{mp + r} b^s \rangle \) with \(K_{\hat{\psi}} \) a spine of \(\hat{M} \). Thus, \(\hat{M} \) is a lens space. Let \(\lambda \) be the order of \(\pi_1(\hat{M}) \). Then \(\lambda = |ps - q(mp + r)| \). Thus, assuming that \(M_{p, r, q, s} \) and \(M_{p', r', q, s'} \) are homeomorphic, we conclude that

\[
ps - qr - mpq = \epsilon(ps - qr - m'pq)
\]

for \(\epsilon = \pm 1 \) and appropriate choices of \(m \) and \(m' \). Hence,

\[
p(s - cs') - q(r - cr') = pq(m - cm'),
\]

and the theorem follows.

Corollary. There exists a compact orientable irreducible 3-manifold which is not embeddable in \(S^3 \) but which is of the same homotopy type as a torus knot space.

Proof. Suppose that \(M = M_{p, r, q, s} \) is embeddable in \(S^3 \). Then \(\partial M \) is a torus \(S^1 \times S^1 \) in \(S^3 \). Since \(M \) is not a solid torus, it follows that \(\text{cl}(S^3 - M) \) is a solid torus. Hence \(S^3 \) is obtainable from \(M \) by attaching a 2-handle along some nonseparating simple closed curve in \(\partial M \) and then attaching a 3-cell to the resulting 2-sphere boundary. Thus \(ps - qr - mpq = \pm 1 \) for some \(m \), a condition that is violated for \(p = 5, q = 3, r = 1, \) and \(s = 1 \).

The author wishes to thank Professor Herbert C. Lyon for helpful discussions.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, FLINT, MICHIGAN 48503