EXTENDING CONTINUOUS FUNCTIONS IN ZERO-DIMENSIONAL SPACES

NANCY M. WARREN

ABSTRACT. Suppose that X is a completely regular, zero-dimensional space and that a dense subset S of X is not C^*-embedded in X; does there then exist a two-valued function in $C^*(S)$ with no continuous extension to X? The answer is negative even if X is a compact space. The question was raised by N. J. Fine and L. Gillman in Extension of continuous functions in βN, Bull. Amer. Math. Soc. 66 (1960), 376–381.

This paper answers a question raised by N. J. Fine and L. Gillman in [1]. Suppose that X is a completely regular, zero-dimensional space and that a dense subset S of X is not C^*-embedded in X; does there then exist a two-valued function in $C^*(S)$ with no continuous extension to X? Theorem 1 establishes that the answer is negative.

I. First, I will give some background material, all of which can be found in [2].

All topological spaces are assumed to be completely regular.

The set of all bounded, continuous, real-valued functions on X will be denoted by $C(X)$. A subspace S of X is C^*-embedded in X iff every function in $C^*(S)$ can be extended to a function in $C^*(X)$. The Stone-\check{C}ech compactification of X is denoted as βX; that is βX is the compactification of X in which X is C^*-embedded.

A space X is zero-dimensional if any two completely separated sets in X are contained in complementary open-and-closed sets of X. A space X is zero-dimensional if and only if X is zero-dimensional.

The space of countable ordinals with the order topology will be denoted by W.

II. Theorem 1. There exists a zero-dimensional space X having a dense subset S such that S is not C^*-embedded in X, but every two-valued function in $C^*(S)$ has a continuous extension to X.

Proof. Let $I = [0, 1]$ with the usual topology. For each $\alpha \in W$, select $I_\alpha \subset I$ such that I_α is dense in I and $I_\alpha \cap I_\beta = \emptyset$ if $\alpha \neq \beta$, and such that $\bigcup_{\alpha \in W} I_\alpha = I$.

Received by the editors March 1, 1974 and, in revised form, June 20, 1974.

Keywords and phrases: Zero-dimensional space, C^*-embedded.
Let \(S_\alpha = \{ (x, \alpha) : x \in \bigcup_{\beta > \alpha} I_\beta \} \) and \(S = \bigcup_{\alpha \in \mathbb{W}} S_\alpha \). Then \(S \subseteq I \times \mathbb{W} \).

Topologize \(S \) using the relative topology from \(I \times \mathbb{W} \).

Note that the collection of all neighborhoods of \((x, \alpha) \) of the form \(\{(r, y) : y < r < z \text{ and } \delta < y \leq \alpha \} \) where \(y < x < z \) and \(y \) and \(z \) belong to \(\bigcup_{\beta > \alpha} I_\beta \) is a basis of open-closed neighborhoods of \((x, \alpha) \) since \(\bigcup_{\beta > \alpha} I_\beta \) is dense in \(I \).

Let \(X = S \cup \{ 2 \} \). We define a topology on \(X \) as follows. \(S \) will be an open subspace of \(X \). A neighborhood of \(2 \) is any set \(U \) containing \(2 \) such that \(2 \in U \) and there is a \(\beta \in \mathbb{W} \) such that \(\{(x, \alpha) : \alpha > \beta \} \subseteq U \).

Since every neighborhood of \(2 \) intersects \(X \), \(S \) is dense in \(X \). Also, \(S \) is completely regular since \(S \subseteq I \times \mathbb{W} \) where both \(I \) and \(\mathbb{W} \) are completely regular.

A consequence of the following proof that \(X \) is zero-dimensional is that \(X \) is normal. So \(X \) is, clearly, completely regular.

To show that \(X \) is zero-dimensional, I will show that any two disjoint closed sets in \(X \) are contained in complementary open-closed sets. First, consider the case where \(A \) and \(B \) are disjoint closed sets in \(X \) such that \(A \cup B \subseteq C = \bigcup_{\alpha \leq \gamma} S_\alpha \) for some \(\gamma \in \mathbb{W} \). Consider \(\alpha_0 \leq \gamma \). For each point \((x, \alpha_0) \in S_{\alpha_0} \) pick \(U(x) \) a basic open-closed neighborhood of \((x, \alpha_0) \) such that either \(U(x) \cap A \) or \(U(x) \cap B \) is empty. Identifying \(S_{\alpha_0} \) with \(I - \bigcup_{\beta > \alpha_0} I_\beta \), \(S_{\alpha_0} \) is second countable, so a countable collection \(\{ U(x) : n \in \mathbb{N} \} \) covers \(S_{\alpha_0} \). Now, since \(\gamma \in \mathbb{W} \) there is a countable collection, say \(\{ V_n : n \in \mathbb{N} \} \) of open-closed sets, covering \(C \) with the property that for each \(n \), either \(V_n \cap A \) or \(V_n \cap B \) is empty. Define \(W_n = V_n - \bigcup_{i < n} V_i \). Then \(\bigcup_{n \in \mathbb{N}} W_n \) is a collection of disjoint open-closed sets which covers \(C \) and either \(W_n \cap A \) or \(W_n \cap B \) is empty. Let \(0 = \bigcup \{ W_k : \bigcap A = \emptyset \} \); then \(C - 0 = \bigcup \{ W_k : \bigcap A \neq \emptyset \} \). So \(0 \) and \(C - 0 \) are complementary open-closed sets in \(C \) and \(A \subseteq C - 0 \) and \(B \subseteq 0 \). Since \(X - C \) is open and closed in \(X \), \(0 \cup X - C \) and \(C - 0 \) are complementary open-closed sets in \(X \).

Now, suppose \(A \) and \(B \) are disjoint closed sets in \(X \) and \(2 \in A \). Then there exists a \(\beta \in \mathbb{W} \) such that \(B \subseteq D = \bigcup_{\alpha \leq \beta} S_\alpha \). Since \(D \) is closed in \(X \), \(A \cap D \) is closed in \(X \). By the above argument there exist complementary open-closed sets \(H \) and \(K \) in \(D \) such that \(B \subseteq H \) and \(A \cap D \subseteq K \). Then \(H \) and \(K \cup X - D \) are complementary open-closed sets in \(X \) such that \(B \subseteq H \) and \(A \subseteq H \cup X - D \). So \(X \) is zero-dimensional.

To show that \(S \) is not \(C^* \)-embedded in \(X \), define \(F : S \to I \) by \(F((x, \alpha)) = x \). Obviously \(F \) is continuous.

However, \(F \) cannot be extended continuously to \(2 \), since \(F \) assumes all values in every neighborhood of \(2 \).

Every two-valued continuous function on \(S \) can be extended continuously to \(X \). Let \(f \) be a two-valued continuous function on \(S \) with range \(10, 11 \). For
each \(x \in I \), there exists an \(\alpha_x \in W \) such that \(f \) is constant on \(\{ (x, \beta) : \beta \geq \alpha_x \} \), since for fixed \(x \), the set of all points \((x, \alpha) \in S \) is homeomorphic to \(W \).

Now, for each \(x \in I \), \(x \not= 0, 1 \), there exists an integer \(N_x \) such that \(f \) is constant on
\[
U_x = \{ (y, \alpha) : x - 1/N_x < y < x + 1/N_x, \alpha > \alpha_x \}.
\]
If not, then for every integer \(n \), there is a point \((y_n, \alpha_n) \) such that \(x - 1/n < y_n < x + 1/n \) and \(\alpha_n > \alpha_x \) and \(f((y_n, \alpha_n)) \neq f((x, \alpha_x)) \). But \(x \) is the limit of \(\{ y_n \} \) and some \(\alpha' \in W \) is the limit of \(\{ \alpha_n \} \), so by the continuity of \(f \), \(f((x, \alpha')) \neq f((x, \alpha_x)) \) which is a contradiction since \(\alpha' > \alpha_x \). Similar arguments establish the existence of \(U_0 \) and \(U_1 \).

For each \(U_x \), consider \(U'_x = (x - 1/N_x, x + 1/N_x) \subset I \). The collection \(\{ U'_x : x \in I \} \) is an open cover of \(I \). Pick a finite subcover \(\{ U'_{x_i} \}_{i=1}^k \). Let \(\alpha_{x_1} \) be the largest of the ordinals \(\{ \alpha_{x_i} \}_{i=1}^k \). Then \(f \) is constant on \(B = \bigcup_{\beta > \alpha_{x_1}} S_\beta \).

Extend \(f \) to \(f' : X \rightarrow \{ 0, 1 \} \) by defining \(f'(2) = f(B) \). Clearly \(f' \) is continuous at 2 since \(B \cup \{ 2 \} \) is a neighborhood of 2.

III. Corollary. There exists a zero-dimensional compact space which satisfies Theorem 1.

Proof. Since \(X \) is zero-dimensional, \(\beta X \) is zero-dimensional and \(S \) is dense in \(\beta X \). Since \(F \in C^*(S) \) cannot be extended to \(X \), \(F \) cannot be extended to \(\beta X \). But every two-valued function in \(C^*(S) \) extends to \(X \) and hence to \(\beta X \). So \(\beta X \) is a compact zero-dimensional space which satisfies Theorem 1.

REFERENCES

DEPARTMENT OF MATHEMATICS, METROPOLITAN STATE COLLEGE, DENVER, COLORADO 80222