ABSTRACT. Johnson [A crinkled arc, Proc. Amer. Math. Soc. 25 (1970), 375—376] has shown that under suitable normalizations all crinkled arcs are unitarily equivalent. Using this result, we find a general series expansion for a crinkled arc:

\[f(t) = \sqrt{2} \sum_{n=1}^{\infty} x_n \frac{\sin(n - \frac{1}{2})\pi t}{(n - \frac{1}{2})\pi}, \]

where \(\{x_n\} \) is an orthonormal set.

Originally introduced in problem four of Halmos [2], a crinkled arc may be defined as a continuous map \(f: [0, 1] \to X \), a Hilbert space, which is one-to-one and possesses the crinkly property: if \(0 < a < b < c < d < 1 \), then the chords \(f(b) - f(a) \) and \(f(d) - f(c) \) are orthogonal. It is convenient to consider the following normalizations:

(I) \(f(0) = 0 \) by translation,

(II) \(\| f(1) \| = 1 \) by a scale change,

(III) \(X = \sqrt{f} \) where \(\sqrt{f} \) is the smallest Hilbert space containing the values of \(f \).

Under these conditions, Johnson [3] has derived a number of results including \(t \to \| f(t) \| \) is a strictly monotone continuous map of \([0, 1] \) onto \([0, 1] \). This allows an additional normalization in the following way: if \(f(t) \) is a crinkled arc with \(\phi(t) = \| f(t) \| \), then \(\hat{f}(t) = f(\phi^{-1}(\sqrt{2}t)) \) represents the same locus but with \(\| \hat{f}(t) \|^2 = t \). Consequently, we introduce

(IV) \(\| f(t) \|^2 = t \)

and consider now only crinkled arcs satisfying (I)–(IV). In this context, Johnson's main result says that any two crinkled arcs are unitarily equivalent in the sense that if \(f: [0, 1] \to X \), \(g: [0, 1] \to Y \), then there is an isometry \(U: X \overset{\text{onto}}{\to} Y \) such that \(g(t) = Uf(t) \). We shall use this result to prove the following representation.

Theorem. \(f(t) \) is a crinkled arc iff

\[f(t) = \sqrt{2} \sum_{n=1}^{\infty} x_n \frac{\sin(n - \frac{1}{2})\pi t}{(n - \frac{1}{2})\pi}, \]

where \(\{x_n\} \subseteq X \) is an orthonormal set.

Presented to the Society, July 5, 1974; received by the editors June 19, 1974.

AMS (MOS) subject classifications (1970). Primary 46C05; Secondary 40J05, 41A65.

Key words and phrases. Crinkled arc, Brownian motion, Karhunen-Loève expansion.

Copyright © 1975, American Mathematical Society
The proof follows from the observation that in the theory of stochastic processes, Brownian motion $W(t)$ defined on $[0, 1]$ may be regarded as a crinkled arc in a suitable Hilbert space B of random variables. A direct application of the Karhunen-Loève expansion theorem provides the representation

$$W(t) = \sqrt{2} \sum_{n=1}^{\infty} b_n \frac{\sin((n - \frac{1}{2})\pi t)}{(n - \frac{1}{2})\pi}$$

where $\{b_n\} \subseteq B$ is an orthonormal set (Ash [1]). If $f(t) \subseteq X$ is a crinkled arc, there is an isometry $U: B \to X$ such that

$$f(t) = UW(t) = \sqrt{2} \sum_{n=1}^{\infty} (Ub_n) \frac{\sin((n - \frac{1}{2})\pi t)}{(n - \frac{1}{2})\pi}.$$

Identifying $x_n = Ub_n$, we have the desired result in one direction. Conversely, if $f(t)$ has a representation (1) then we can define an isometry $U: B \to X$ coordinatewise by $Ub_n = x_n$. It is immediate that all of the properties of $W(t)$ as a crinkled arc are carried into $f(t)$.

Remark 1. The series convergence in (1) is uniform in t since

$$\left\| \sqrt{2} \sum_{n=k}^{\infty} x_n \frac{\sin((n - \frac{1}{2})\pi t)}{(n - \frac{1}{2})\pi} \right\|^2 = 2 \sum_{n=k}^{\infty} \|x_n\|^2 \frac{\sin^2((n - \frac{1}{2})\pi t)}{(n - \frac{1}{2})^2\pi^2} \leq 2 \sum_{n=k}^{\infty} \frac{1}{(n - \frac{1}{2})^2\pi^2} \to 0 \text{ as } k \to \infty.$$

Remark 2. If (IV) is dropped, then (1) holds with t replaced by $\|f(t)\|^2$ on the right-hand side. Relaxations of (I) and (II) require the obvious modifications.

Acknowledgement. The author wishes to thank the referee for drawing attention to Johnson [4] in which an iterative construction of a crinkled arc is discussed.

REFERENCES

DIVISION OF APPLIED MATHEMATICS, BROWN UNIVERSITY, PROVIDENCE, RHODE ISLAND 02912

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use